
Laboratory for Simulation Development – LSD

Marco Valente
marco.valente@univaq.it

June 4, 2014

Contents

I Simulations and LSD vii

1 Why using LSD? 1

1.1 Simple to use AND powerful . 1

1.2 Open-ended simulation models . 2

1.3 Controlling simulation models . 2

1.4 Intended audiences, aims and content . 5

1.4.1 Content of chapter I . 6

1.4.2 Content of chapter II . 6

1.4.3 Content of chapter III . 7

1.4.4 Content of chapter IV . 7

1.5 Methodological issues on simulations . 7

1.6 History of LSD . 10

1.6.1 LSD pre-history . 10

1.6.2 LSD 0.01 . 11

1.6.3 LSD in use . 13

2 Features of Laboratory for Simulation Development 15

2.1 Simulation Model elements . 16

2.1.1 Variables . 16

2.1.2 Functions . 17

2.1.3 Parameters . 17

2.1.4 Objects . 17

2.1.5 Data required for a simulation run . 18

2.2 Overview of the LSD package . 18

2.2.1 LSD Model Manager - LMM . 19

2.2.2 LSD model programs . 20

2.3 Technical requirements . 21

2.4 Installation . 22

2.4.1 Windows platforms . 22

2.4.2 Linux and Unix-based plaftorms . 22

2.4.3 MacOS . 23

2.5 LSD Model Manager - A first look . 23

3 Example 1 - Random Walk 27

3.1 Random walk . 27

3.2 Analysing the results . 29

3.3 Managing random events . 30

3.4 Multiple objects . 31

3.5 LSD automatic data retrieving . 31

3.6 Functions vs variables . 32

3.7 Analysing massive amounts of data . 33

asda ii CONTENTS

II Tutorials 35

4 Implementing LSD models: Example 1 37
4.1 Create a new model project . 38
4.2 Introduction to LSD equations . 39
4.3 Defining LSD model elements . 41
4.4 Running LSD simulations . 43
4.5 Results of LSD simulation runs . 44
4.6 Extending a LSD model equations . 45
4.7 Initializing LSD elements . 47
4.8 Setting the number of objects . 49
4.9 Initializing multiple elements . 49
4.10 Plotting multiple series . 50
4.11 Statistics . 51
4.12 Comments on equations’ code . 51
4.13 Simulation settings . 51
4.14 Using lagged variables . 53
4.15 Multi-layered object structure . 55
4.16 Equations for multi-layered models . 56
4.17 LSD Simulation Manager . 59
4.18 Extending the model: quality and sales . 61
4.19 Assessing the model’s behaviour . 63
4.20 Generating new series . 64
4.21 Replacing a variable . 65
4.22 Dead-lock errors - Spotting and fixing temporal inconsistencies 66
4.23 Modelling Time: changing order of LSD equations 68
4.24 Interpreting results . 70
4.25 LSD Debugger . 71

5 Implementing LSD Models: Example 2 75
5.1 Model Content . 75
5.2 Model structure and core equations . 76
5.3 Finding model data in LSD equations (equation for IsBroken) 78

5.3.1 Automatic data retrieving . 78
5.3.2 Manual data retrieving . 79
5.3.3 Functions vs. Variables . 79
5.3.4 Accessing the calling object . 80
5.3.5 Accessing a randomly chosen object . 80

5.4 Using parameters as “passive” variables . 81
5.5 Manual scheduling: semaphores . 83
5.6 Initialization by code . 85
5.7 Testing models . 86
5.8 Code optimization . 87

5.8.1 Optimization running options . 87
5.8.2 Optimizing code: hook . 87
5.8.3 Optimizing code: V CHEAT . 89
5.8.4 Optimizing large models: turbosearch . 90

6 Implementing LSD Models: Example 2 91
6.1 Functions . 91
6.2 Analysis of Results: Histograms . 93
6.3 LSD equations: the calling object c . 94
6.4 More on the LSD Debugger . 95
6.5 Extending the model . 97
6.6 Multiple parallel simulations . 98
6.7 Series tags and advanced selection . 101

CONTENTS asda iii

6.8 Cross-section scatter plots . 103
6.9 Creating new series . 105
6.10 Random events . 107
6.11 Conditional searches . 108
6.12 Endogenizing parameters . 108
6.13 Custom initialization: overwriting elements’ values 109
6.14 Nested cycles . 111
6.15 Testing the Smallwood and Conlisk (1979) model 112
6.16 Optimizing simulations: semaphores . 113
6.17 Optimizing simulations: pointer hook . 116
6.18 LSD Automatic Documentation . 116
6.19 Using the Model Report . 118

7 Example Models 121
7.1 Logistic chaotic model . 121
7.2 Spatial market model . 121
7.3 Moving snake model . 121
7.4 Financial market model . 121
7.5 Business plan assessment . 121
7.6 Network externality model . 121
7.7 Nelson and Winter (1982) model . 121
7.8 Lotka Volterra model . 121
7.9 Richardson’s dynamic competition . 122
7.10 Percolation model . 122
7.11 Social network model . 122
7.12 Bounded rational demand . 122
7.13 NK fitness landscape . 122

III LSD Manuals 123

8 LMM interfaces 125
8.1 Editor features . 126

8.1.1 Click with the right button of the mouse . 126
8.1.2 Insert LSD Script . 126

8.2 Menu File . 126
8.3 Menu Edit . 126

8.3.1 Go to line(Ctrl+l) . 127
8.3.2 Match {}(Ctrl+m) . 127
8.3.3 Match ()(Ctrl+p) . 127
8.3.4 Insert {and Insert }(Ctrl+(and Ctrl+)) . 127
8.3.5 Wrap/Unwrap(Ctrl+w) . 127
8.3.6 TkDiff . 127
8.3.7 Compare models . 127

8.4 Menu Model . 128
8.4.1 Browse Models . 128
8.4.2 Compile and Run model . 128
8.4.3 GDB Debug . 129
8.4.4 Show Equation File . 129
8.4.5 Show Makefile . 129
8.4.6 Show Compilation results . 130
8.4.7 Show Description . 130
8.4.8 Model Info . 130
8.4.9 System compilation options . 130
8.4.10 Model compilation option . 130
8.4.11 Generate a ’NO WINDOW’ makefile . 130

asda iv CONTENTS

8.5 Menu Help . 131

9 LSD model program interfaces 133
9.1 Browser window features . 133

9.1.1 Moving elements . 134
9.1.2 Options for an element . 134
9.1.3 Objects’ options . 135

9.2 Menu File . 136
9.3 Menu Model . 136

9.3.1 Add a variable(Ctrl+v) . 136
9.3.2 Add a parameter(Ctrl+p) . 137
9.3.3 Add a function(Ctrl+n) . 137
9.3.4 Add a descending Obj.(Ctrl+d) . 137
9.3.5 Insert a new parent . 137
9.3.6 Change obj. Name . 137
9.3.7 Set equation file label . 138
9.3.8 Ignore equation file controls . 138
9.3.9 Upload equation file . 138
9.3.10 Offload the equation file . 138
9.3.11 Compare eq. files . 138
9.3.12 Generate automatic documentation . 138
9.3.13 Create report . 138
9.3.14 Create LaTex report . 139
9.3.15 Find an element of the model(Ctrl+f) . 139

9.4 Menu Data . 139
9.4.1 Set number of objects(Ctrl+o) . 139
9.4.2 Init. values(Ctrl+i) . 140
9.4.3 Sensitivity (parallel) . 140
9.4.4 Sensitivity (sequential) . 141
9.4.5 Analysis of Results(Ctrl+a) . 141
9.4.6 Save Results(Ctrl+z) . 141
9.4.7 Data Browse(Ctrl+b) . 141

9.5 Menu Run . 141
9.5.1 Run(Ctrl+r) . 141
9.5.2 Set sim. settings(Ctrl+m) . 142
9.5.3 Remove debug flags . 143
9.5.4 Remove save flags . 143
9.5.5 Remove plot flags . 144
9.5.6 Show elements saved . 144
9.5.7 Show elements to observe . 144
9.5.8 Show elements to initialize . 144
9.5.9 Remove run time plots . 144

9.6 Menu Help . 144
9.7 Module Set Objects’ number . 145
9.8 Module Initial values . 147

9.8.1 Initialization functions . 148
9.9 Module Analysis of Results . 150

9.9.1 Selecting series to process . 151
9.9.2 Advanced selection . 152
9.9.3 Graphs general options . 153
9.9.4 Graph windows’ features . 153
9.9.5 Graph type Time Series - Sequence . 154
9.9.6 Graph type Cross section - Sequence . 155
9.9.7 Graph type Time Series - XY plot . 155
9.9.8 Graph type Cross section - XY plot . 157
9.9.9 Graph type Histograms . 158

CONTENTS asda v

9.9.10 Graph type Lattice . 158
9.9.11 Statistics . 159
9.9.12 Exporting data . 159
9.9.13 Exporting graphs . 160
9.9.14 Adding further series . 160

9.10 Module LSD Debuggerand Data Browser . 161
9.10.1 Inspecting and changing elements’ states . 162
9.10.2 Inspecting and changing objects . 163
9.10.3 Moving the browser through the objec structure 163
9.10.4 Simulation run’ controls . 164
9.10.5 Debugger header . 164

9.11 Log window features . 164
9.11.1 Button Stop . 164
9.11.2 Button Fast . 165
9.11.3 Button Observe . 165
9.11.4 Button Debug . 165
9.11.5 Button Help . 165
9.11.6 Button Copy . 165

9.12 Model structure window features . 165

10 LSD modelling language 167
10.1 Introduction . 167

10.1.1 Model structure . 168
10.1.2 LSD equations . 168

10.2 Computable elements: variables and functions . 169
10.3 LSD Simulation Manager . 170
10.4 Environment for LSD equations . 171

10.4.1 Managing time lags . 171
10.4.2 Managing multiple copies . 172

10.5 C++ basic grammar for LSD coding . 172
10.5.1 Comments . 173
10.5.2 Assignments, arithmetic operations and increments 173
10.5.3 if ... then ... else . 174
10.5.4 Use of cycle for . 175

10.6 System variables available for equations’ writing 175
10.6.1 System variables locally available within an equation 176
10.6.2 System variables specific to the equation under computation 176
10.6.3 Global system variables . 176

10.7 LSD objects’ links: ->up, ->next and ->son . 177
10.8 LSD commands for equations . 177

10.8.1 EQUATION("Label") ... RESULT(value) . 178
10.8.2 V("X") . 178
10.8.3 V CHEAT("X", fake caller) . 179
10.8.4 SUM("X") . 180
10.8.5 STAT(X) . 180
10.8.6 WHTAVE("X","W") . 181
10.8.7 MAX("X") . 181
10.8.8 Mathematical and probabilistic commands 182
10.8.9 WRITE("X",value) . 182
10.8.10 INCR("X",value) . 183
10.8.11 MULT("X",value) . 183
10.8.12 SEARCH("X") . 183
10.8.13 SEARCH CND("X",value) . 184
10.8.14 RNDDRAW("X","Y") . 185
10.8.15 CYCLE(obj,"ObjLabel") . 186
10.8.16 SORT("ObjLabel","VarOrParLabel",DIRECTION) 187

asda vi CONTENTS

10.8.17 ADDOBJ("X") . 187
10.8.18 DELETE(obj) . 188
10.8.19 INTERACT("message", value) . 189
10.8.20 PARAMETER . 189
10.8.21 Lattices: creation and updating . 190
10.8.22 close sim() function . 191
10.8.23 Free pointer hook . 192
10.8.24 turbosearch, initturbo . 194

10.9 User defined external functions . 195
10.10External functions from C++ libraries . 195

11 Error Messages 197
11.1 Configuration errors . 197

11.1.1 /usr/bin/ld: cannot find -ltcl8.3 197
11.1.2 undefined reference to ’ gxx personality v0’ 197
11.1.3 Other undefined reference ... errors 197

11.2 Equations’ programming errors . 198
11.2.1 fun sd.cpp:17: error: XXX was not declared in this scope 198
11.2.2 fun XXX.cpp:99: parse error before... 198
11.2.3 lsd gnu.exe: Permission denied . 198
11.2.4 fun pippo.cpp:99: label ‘end’ used but not defined 198

11.3 Simulation run errors . 198
11.3.1 Simulation just run . 199
11.3.2 The simulation cannot start because ’XXX’ has not been initialized 199
11.3.3 Error in equation for ’XXX’. The model does not contain any element ’YYY’ . . 199
11.3.4 Error trying to compute variable XXX. Equation not found 199
11.3.5 At time ’T’ the equation for ’XXX’ produced the non-valid value... 199
11.3.6 Search for ’XXX’ failed . 199
11.3.7 Operation ’zzz’ requested to a NULL pointer in equation for ’XXX’ 200
11.3.8 LSD crashes - DEBUG AT(T) . 200
11.3.9 Use of gdb debugger . 200

IV LSD project 203

12 LMM source code 205

13 LSD source files 207

14 Adding new features to LSD 209

15 Adding new members to the equations’ language 211

16 Adding new functionalities to the LSD interfaces 213

vi

Part I

Simulations and LSD

vii

Chapter 1

Why using LSD?

Writing a simulation model entails two operations, conceptually distinct. Firstly, one needs to
design the model, using whatever support seems suitable: mathematical formulation, pseudo-code,
verbal description etc. Secondly, the output of the first step, call it an “abstract” model, must be
translated into a computer program, using a programming language. In theory, any programming
language is potentially able to implement whatever computation is required by a model. However,
in practice, languages differ, even radically, in respect of the possibility to implement in reasonable
time particular classes of models. We may broadly classify different languages across two hypo-
thetical scales of simplicity of use (e.g. how much training and skills are required to implement a
given model) and power (e.g. execution time, maximal dimension of the model). The distribution
of languages presents an inverse relation between these to indicators: simple languages are very
limited, while powerful languages are difficult to use and required specialized programming skills.

LSD breaks this hypothetical trade-off, offering a very simple-to-use language able to gener-
ate professional grade simulation programs whose speed and dimension are limited only by the
computational power embedded in the available hardware. Moreover, LSD also offers features spe-
cific to implement research-oriented simulation models, features that contradicts the principles of
programming for end-users. Below we briefly summarize the most relevant properties of LSD.

1.1 Simple to use AND powerful

The first property is the simplicity of use. Modelers without prior skills can implement simulation
models with a few hours of training, enjoying powerful interfaces to produce even sophisticated
analyses of massive amounts of data. The structure of a LSD model is designed around how people
naturally think of a model, not on how the model is actually implemented. Essentially, users
are invited to consider their model as a set of difference equations that the system automatically
computes for a number of steps. As a general philosophy, the LSD system requires users to input
only the very necessary information (e.g. individual equations), while the system automatically
retrieves details necessary for the execution implicitly available (e.g., the scheduling of equations’
updating). Hence, building even highly complex models requires very little learning time.

Second, users demanding high performance simulation programs can exploit the fact that LSD

is implemented as a set of tools built on top of C++. Hence every library and computational
structure compatible with this language can be included in a LSD model, effectively making LSD

the most generic language available. Also inherited from the underlining C++ is the power of LSD

models at execution time. A pilot model can be designed and tested with, say, tens of entities
using the graphical interfaces endowed automatically in any LSD model. When this is done, a click
of the mouse generates configurations with millions of copies, fully exploiting the computational
power available. Finally, the very same code for a model implemented on a personal consumer
(e.g. Linux, Mac or Windows) can be transferred to a high performance computing center for
massive amount of resulting data, exploiting the possibility to generate command line versions of
LSD models executed in batch mode.

While simplicity of use and power of execution are the features normally considered when

1

asda 2 Why using LSD?

evaluating a generic programming language, two other aspects are specifically relevant to research-
oriented simulation models: flexibility to modification, even radical, and accessibility of the code
at run time.

1.2 Open-ended simulation models

Any programmer is taught that the very first step in a software project consists in designing the
structure of the future program as a function of the careful analysis of users’ requirements. Modify-
ing such structure at a later stage is very hard and extremely dangerous, introducing instability and
poor functionality. The typical result of a badly designed software is that adding incrementally ad
hoc adjustments produces increasingly complex irrational code, reaching the point that the easiest
choice is to scrap the project altogether and start from a clean sheet. However, research-oriented
simulations, by definition, only rarely enjoy the possibility to clearly predict the directions of de-
velopment of a model. Typically the researcher starts with an initial prototype and, depending on
the result, will decide how to expand it. Hence, researchers using simulation models are bound to
either limit to implement models that produce perfectly known results, or are subject to recurrent
complexity crises forcing them to loose all work done to start again a novel project that, in effect,
have only minimal differences with the original one.

LSD greatly reduces the risk of getting one’s code entangled in layers of corrections. One reason
is that many of the decisions concerning the technical implementation of the code are automatic,
so even radical changes costs nothing in terms of modeler efforts. For example, inverting the order
of execution of variables can be generated with a single character in an equation code. More in
general, LSD favors naturally a modular design. Each variable is associated to a piece of code,
typically very simple, providing the expression to compute the value for the generic copy of that
variable at a generic time step. At simulation time, all pieces of code for the necessary elements
are arranged so as to produce a working computational structure without need of the modeler
intervention, unless errors occur (and, in this case, a full report on the origins and possible fixes
are provided). Consequently, for example, the same element in a model can be defined as parameter
in a first version, then turned into a variable computed according to a structural function, or finally
associated to the result from the highly complex elaboration performed by external libraries. The
modeler does not need to care for possible effects of the different choices on the rest of the model,
as the system automatically re-arrange the computations as necessary to the current state of the
model1. The effect of the LSD natural modularity is that changing the content of an existing model
is a very smooth process, rarely causing problems. Because of the very structure of a LSD mode,
users are strongly invited to adopt a very gradual approach to model building, implementing
one equation per time, and testing its proper working before adding new elements. Code from
different models can be seamlessly merged relying on the automatic controls for missing elements,
inconsistencies, or any other possible problems. For example, in two separated models can be
implemented the demand and the supply of a market. Once these models have been properly
tested in isolation they can be later merged without any effort even in case the interaction among
the elements of the two models necessitate radical modification at run time, since these will be
automatically provided by the system.

In conclusion, the intrinsic modularity of LSD and the automatic filling of implicit information
permits to modify any part of the model at any stage, simplifying both the adjustment of an ongoing
project and the re-use of code developed for other purposes. These features are particularly valuable
for simulation models developed for research purposes, whose content and overall structure cannot
be planned in advance as with software projects developed for a well-specified purpose.

1.3 Controlling simulation models

Programming languages are devised to implement efficiently code generating services to the user
of the program, but not to show what is happening within the execution of a program. Indeed,

1Indeed, during the same simulation run the same element can be “frozen” as parameter and turned temporarily
to a variable to execute specific pieces of code, in effect changing dynamically the very structure of the simulation
program as result.

2

1.3 Controlling simulation models asda 3

we use computers exactly because they execute at extreme speed many operations without the
requirement for the user to monitor how these operations are performed. Inspecting the state of
a program, and understanding how exactly it reached a certain condition, is a very difficult task,
requiring both skills and special tools devised for the purpose. For general programming projects
(and therefore also for simulation models), the internal inspection is obviously required in order to
fix errors, normally called debugging. But simulation models have also a further requirement when
used in a research project. In fact, in general programmers know the desired output of the program,
and the need to inspect the inner working of the program arises only with the software behaviour is
not the expected one. Conversely, the very reason for implementing a simulation model for research
purposes is that we do not know with certainty what results should be produced. The inspection
of the inner workings of the simulation program is therefore a necessity not only to fix errors, but
also to investigate the motivations for a specific aggregate behaviour.

A standard programming language is designed on the principle that only the developer is able
to access its internal code, for example using debugging tools. The user of the program, on the
contrary, can control the program only making use of interfaces specifically developed by the
programmer, and is generally forbidden the access to the internal working of the program. This
has the cost for the programmer to write code for the interfaces, but has the advantage that the
users don’t have the possibility to mess up with the program unless using the interfaces prepared by
the programmer, and therefore the being subject of the limitations embedded in those interfaces.

For research simulations this is a serious obstacle to the exploitation and diffusion of a model.
Either the modeler devotes precious time to the tedious job of adding layers of interfaces, or it is
impossible (or extremely problematic) to perform certain tasks. Even relatively small models, for
example, can include dozens (or, worse, a varying number) of parameters affecting their results.
Without appropriate interfaces it is impossible to even know the values used in a given configura-
tion, not to mention changing them. Similarly, the results produced by a simulation run concern
dozens or hundreds of series. Lacking appropriate tools it is impossible to access these series, and
even less to investigate the process of generating these series at specific moments. The result is
that a typical simulation model distributed to users includes the possibility to modify a few options
among the many potentially relevant to explore, and produces as output only one among many
possibly interesting results. Moreover, the events during a simulation run are generally impossible
to access, apart a few indicators decided once and for all by the modeler. Consequently the whole
system is, in the ends of the user, a black-box producing a trickle of data, possibly affected by a
few initial settings. Any scientific claim concerning the simulation run properties need therefore
to rely on the trust one has in respect of the modeler claim (and his capacity to have succeeded in
implementing the claimed model). This is a decisively poor practice among researchers, and LSD

offers powerful solutions to the problem of controlling a simulation model.
LSD models do not require users to write specific code for interfaces. Rather, a professional

suite of windows, controls, options, etc. is automatically attached to any element at the time of
its creation. Using these interfaces both the modeler and any subsequent user can access, both
to observe or to modify, any possible relevant piece of information concerning that element. The
interfaces can be divided in three classes depending on the stage they can be used.

Before a simulation run graphical interfaces allow to generate, edit, move or delete any element.
For elements requiring numerical values, such as parameters, the system offers a wide variety of
sophisticated initialization tools, ranging from the trivial manual entry to the comprehensive setting
of million of entities according to elaborated procedures.

During a simulation run users can interrupt the model, inspect any element, proceed step-
by-step, edit the value of selected elements, and complete the simulation run, so as to perfectly
understand every event taking place at any level.

At the end of a simulation run (or during an interruption), every value produced during the
simulation is available for graphical and statistical elaboration. The LSD interfaces are particularly
suited to deal with the massive amounts of data easily produced by modern computers, allowing
users to select which datum to use.

Across all the stages of building a model, a fairly complete error catching system prevents the
crash of the program and supplies any information concerning errors or inconsistencies, suggesting
possible fixes.

In conclusion, a model implemented in LSD offers the modeler unique tools to explore any

3

asda 4 Why using LSD?

possible property of the model and support any related claim by merely instructing others to
replicate the very same operations. Skeptics of a given result have the possibility to observe in
detail the claimed property, and use the very same interfaces used for the claimed discovery to
challenge its existence, generality, robustness, etc.

LATEX
LATEX
LSD

LSD

The two difficulties mentioned above are responsible for the largest share of failure of research

projects relying on simulation models, and many other difficulties are recognized to severely limit
the use of simulation models. Many simulation languages have been proposed to solve one or
another of the difficulties arising from the particular programs required for simulations. In general
terms, there is the agreement that simulation languages can be imagined as distributed as an inverse
relation between difficulty in using them and their computational power. Fast and flexible languages
are very difficult to learn, posing severe entry barriers to would-be modellers. Conversely, languages
simple to use impose strict limitations on the nature of the models that may be implemented, and
are generally slow and inefficient.

LSD breaks this trade-off, offering a professional language, fast and flexible, but requiring only
minimal programming skills, basically defined by the very content of the model. The approach
used by LSD is to allow users to express their model in the same way as they would use to describe
the model in a system of discrete equations model. The LSD system automatically assembles the
information contained in the equations and generates a professional simulation program endowed
with a complete set of interfaces to insert initial values, run simulations, observe any possible type
of result, identify and fix errors, etc., without requiring any additional effort. LSD does not only
allows unskilled programmers exploit simulation models, but also provides experienced modellers
with sophisticated tools to test the robustness of results, inspect model states at run time, and
execute extremely fast simulation runs on most of commonly available platforms. Finally, although
LSD provides professional services to developers of simulations, it also offer the tools required to
have potential audiences full access of the model results. For example, the files containing a model
are simple text files, that can be used by anyone installing the (free and small) system, available for
most common operative systems. Receivers of a model can replicate the results generated by the
modeller, or test different initializations even ignoring the model’s implementation, as, for example,
may be required for teaching purposes. Furthermore, LSD models can generate automatically
textual documentation containing every aspect of the model, in formats accessible by people with
varying degrees of confidence with programming languages.

The approach used to represent models in LSD consists in separating models by the program
implementing a simulation. Modellers need not to describe in the code all the steps to be performed
in a simulation, together with the data structures. Rather, the modeller defines pieces of code as
“equations”, that is, computations associated to the variables of the model. The language for the
equation allows to express any possible code, and it is particularly simplified because it requires to
express the computation in the most generalized way, as much as one would describe an equation
for the computation at the general time t for the general instance i of the variable. Separately,
the model structure is defined in terms of “objects” containing the elements of the model, as,
for example, variables and parameters. Only at run time, when a simulation is run, the system
automatically associates each equation’s in the model to the code required to compute its values,
organizing automatically the general expression of the code to the conditions required by the
current state of the model.

The style of modelling favored (but not forced) using LSD is particularly useful to implement
agent-based models. In fact, these kind of models require highly complex interactions among
elements at different hierarchical levels, which are generally difficult to implement. Moreover,
modifying such models, even slightly, may imply a complete revision of the scheduling of execution
or the identities of the interacting elements. These (and other) potential problems are automatically
solved by LSD, which therefore allows easily a gradual development of a simulation model, without
the need to make rigid commitments at the initial stages of the development of a simulation model.

The graduality of development is also favored by the intrinsic modularity of LSD models. Since

4

1.4 Intended audiences, aims and content asda 5

the code for the model is defined as individual equations, most of this code is composed by a few
lines, rarely reaching more than a few dozen lines. These chunks of code are easy to monitor,
assess, modify and re-use, while several automatic LSD systems allow to identify and expose errors
or inconsistencies, or simply to monitor the actual behaviour of the model at any possible level of
detail.

Non-programmers find generally LSD simple to comprehend, since it fits nicely with the idea of a
simulation. However, LSD, being a language, does not provide ready-to-use models, but for examples
that can be used for inspiration, or even providing full chunks of code. Therefore, modellers are
supposed to learn as much programming as required by their own models, and therefore the overall
difficulty in using LSD is strictly dependent on the complexity of the model content.

A long experience shows that first-time users of LSD have more problems when they have prior
programming experience. In fact, experienced programmers tend to be suspicious of a program
where they cannot define a “main” function, organizing the scheduling, defining variables, etc.
However, these type of users can easily loose their initial suspicions learning how LSD generates
a simulation from the information provided by the modeller. This knowledge allows also to ex-
ploit LSD at its best, by offering the possibility to overrule the default (and safe) LSD automatic
mechanism and implementing any possible functional form.

Finally, LSD relies heavily on the underlying C++, which is the language used for the LSD own
implementation. LSD has an open architecture, so that, for example, it is possible in a model to
insert any C++ structure, including calls to external libraries, as in any C++ program.

Concerning the limitations of LSD, they depend on its generality. As with any pure programming
language, LSD requires the modeller to describe what the model has to do, not what results should
be obtained. For example, in LSD does not exist a command like: find the solution(s) to the
problem given by these constraints. Unless, of course, the modeller writes (or imports) the code
implementing the necessary steps of a solving algorithm.

Also, LSD is less sophisticated than some other simulation languages concerning the presentation
of the results. In this respect LSD contains an efficient module generating various graphical tools,
adapt for representing time series and cross sections plots (including 3D graphs), besides some basic
graphs for histograms and lattices. However, this module is designed favoring efficiency (crucial
to deal with large amount of data) rather than graphical elegance. Users for more advanced
presentation tools need to rely on the exporting of the required data to be used in specialized
packages.

LSD is based on the assumption that a modeller needs to face no more difficulties in implementing
the model as those imposed by the intricacies of the model itself. However, LSD is based on a pure
programming language, and therefore does not provides services offered by other simulation tools.
For example, LSD does not include symbolic or numerical solvers generating solutions, as, for
example, Mathematica does. Also, LSD computes models based on numerical variables, so that
users have not available ready-to-use elaborated data structures. However, LSD allows easily the
re-using of part of other models, since they are expressed in generalized formats.

This book is meant to be a support to the use of LSD, for either experienced programmers or first-
time modellers. Also experienced LSD users will find the full description of how the system works
and how to improve their work. Finally, LSD is open to improvements, and a section of this book
describes the internal architecture of the system as developed so far. The rest of this introductory
chapter defines in greater detail the content of the book and provides general definitions used in
the following chapters.

1.4 Intended audiences, aims and content

There are different types of users potentially interested in using LSD, and therefore there are as
many ways of reading this book. Firstly, there are readers interested in understanding what LSD is
about, its features and potential applications. For these readers, the text provides an overview of
the system and an ample set of examples implemented with LSD. In this case, the aim of the book
is to show that LSD is a powerful tool to implement a wide range of simulation models and very
simple to use, both for developing and for exploring models’ properties.

5

asda 6 Why using LSD?

Secondly, there are readers interested in learning how to use LSD for implementing specific mod-
els. For these readers the book provides a guide to understanding what simulation are, and two
extensive tutorials teaching step-by-step how to develop an example simulation model. The first
tutorial describes the basic elementary steps, while the second covers almost all the functionalities
available to build models, including rather advanced ones. Moreover, the book contains the de-
scription of several example models providing inspiration, as well as full components, to be used
for new projects.

Thirdly, users of LSD in the process of developing a model, or extending existing ones, can use
this book as a reference manual for a detailed description of all the functionalities available, as
well as tricks to optimize simulation, documentation of all errors, and generally instructions for
any possible problem.

Lastly, the book documents technically the LSD project, describing the architecture of the
system, the structure of the source code, and hints on how to develop new features.

The structure of the book is therefore rather modular, so that different types of users may
be interested in reading different parts and skipping others. In the following we provide a brief
description of the book’s content and indicate the type of readers potentially interested.

1.4.1 Content of chapter I

The rest of this introductory section contains a brief methodological paragraph describing differ-
ent uses of simulation models, followed by the decade long history of development of LSD. The
information contained in these two parts are not crucial for the rest of the book, but may be of
interest to the readers curious about the motivations and background of the development of the
LSD project.

Section 2 provides the definitions used in the book for a simulation models and its components.
Since this section introduces the basic terminology used throughout the text, all the users should
be interested in reading this. The section describes also the technical components of the system,
including the instructions for the installing the LSD distribution on MS Windows, Unix and MacOS
platforms.

Finally, section 3 contains a detailed description of the nature of results LSD models can provide.
This section describes verbally a few simple models included in the LSD distribution and provides
step-by-step instructions on how to run pre-defined simulation exercises. The goal of these exercises
is to familiarize with the operations required to run simulations and generate results, an experience
that will facilitate the learning of building a model from the scratch. Users willing to learn the
use of LSD are invited to follow and replicate the examples described there, while other users may
be just interested in reading what features LSD offers concerning the managing of the results of
existing models. Models in this part are selected in order to minimize the complexity of the model
content, while providing a rich variety of results, so that to become familiar with the interfaces for
dealing with the LSD results. Given this aim, these models do not represent a significant sample of
the potentiality of LSD.

1.4.2 Content of chapter II

This chapter contains two tutorials aimed at teaching first-time users of LSD how to develop a
simulation model from the scratch. The first tutorial provides step-by-step instructions on every
single operation required to generate the model, analyse the results and fix the most frequent
types of errors. This tutorial instructs the user to generate a rather simple model, concluding
with a discrete version of the replicator dynamics model. The second tutorial skips on the detailed
description for the most common operations, relying on the experience of users supposedly gained
with the first tutorial, and focuses on more advanced issues. The second tutorial illustrates how to
generate an optimized version of a model published in the economic literature, although originally
presented as a mathematical model.

The final section of this chapter contains a description of a sample of simulation models included
in the distribution of LSD. The description is limited to the basic components of the model and
the major results. Readers interested in these models should observe the full code of the models,
replicate the results, and, possibly copying the relevant components for re-use in their own models.

6

1.5 Methodological issues on simulations asda 7

1.4.3 Content of chapter III

This chapter contains a full and detailed description of all the interfaces of the various modules for
the packages in the LSD distribution, as well as a detailed account of the commands to be used to
express the computational part of the models. As such, this chapter is most likely to be not read
sequentially, but used as reference manuals while working with LSD.

This chapter is divided in a first section concerning the interfaces for the auxiliary program
helping to build the code for the model. The second section describes the interfaces for the LSD

simulation programs and all their modules, controlling the definition of the model elements, the
execution of simulations and the analysis of results. These sections are organized following the
menu entries for the different features. The third section describes in detail all the commands
available for controlling the computation performed by a model. The fourth section describes the
possible errors generated during the construction and use of a model, as well as hints on how to
fix them.

1.4.4 Content of chapter IV

The final chapter describes the source code of LSD, the basic architecture of the program, and hints
at the ways available to edit the code. This chapter is intended for developers willing to contribute
to the expansion of the system, as well as to curious programmers willing to peek into the inner
workings of the LSD language.

1.5 Methodological issues on simulations

LSD is a general purpose language that can be used to implement any possible type of model.
In particular, LSD offers features particularly useful when dealing with agent-based models and
with large models, composed by many elements running for an extensive number of time steps.
However, LSD is so easy to use, that even a “toy” model, as that composed by a single equation,
can be implemented with less effort than, say, typing the function in Excel to assess its functional
shape. Therefore, LSD is a worth candidate for any type of simulation model. Though the goal of
this book is not to enter to the lively debate concerning the methodology of simulations in social
sciences, it is worth to review at least some of the main reasons simulation models are developed,
so that to appreciate how LSD can be a helpful tool, and understand the reasons for some choices
concerning its development.

Although simulations can be performed for rather different reasons, we can identify three pos-
sible general classes of motivations for using simulations.

Firstly, we may be interested in goal-oriented simulations. There are cases in which well-
specified problems cannot be easily solved (i.e. identify a solution to a complex problem), and
computers can be used to simply test as many potential solutions as possible in order to identify, if
not the best one, a reasonably good one. The problems to be cracked by the brutal method of trial
and error can range from finding numerically solutions to mathematically intractable problems,
to identify properties of complex systems. Think, for example, of engineers searching for the
particular shapes of an airplane wings, or to investors willing to spot patterns in the price of
financial instruments. All these cases exploit the speed of computers to make calculations in order
to evaluate potential solutions and rank them in order to find, if not the absolute best one, at
least the best among a large set of tested solutions. In these cases, the simulation models are built
to represent a theoretical or physical system, and their use consists in testing as many promising
solutions as possible. Therefore, the properties required to a language for simulations is essentially
to be as fast as the hardware allows.

A second class of simulations consists in making explicit the properties of a system described
in generative terms. Think for example to the properties of complex mathematical systems, like
a chaotic function. Not admitting analytical solutions, computing the value of the function in the
space if its argument may be the only way to appreciate the properties of the complex function.
Similarly, a stochastic system composed by the interaction of many complex random variables
may be too difficult to analyse by searching the resulting aggregate probability function. Instead,
replicating a large number of random draws from stochastic functions with the same properties

7

asda 8 Why using LSD?

can provide useful answers on the properties of the system. Also in this case, as in the previous
one, a simulation language should provide fast programs generating the results. However, it is also
likely that users would like to access easily the results of the model. In fact, these types of models
are likely to be assessed by analysing (say plotting or averaging) a large number of data, and the
format by which the results are presented may become a crucial issue.

The two classes of models described above share a common feature. The internal mechanisms
of the model, if implemented correctly, cease to be relevant for the user of the model, who will be
interested only in the results, and possibly in setting a few parameters. The code of the model can
be easily outsourced to expert programmers, who deliver the implementation of the model without
the users being interested in its implementation, as long as the program correctly represents the
purported model. As far as users are concerned, the model is blackboxed, and only the results
produced matter to the user.

But in some cases, users of the models cannot afford to ignore the way the internal computations
of the model manage to generate the results. Typically in social sciences, researchers can use
models aiming at understanding real events, that is, providing convincing explanations for observed
evidence. These models provide a very simplified representation of the real systems generating the
events object of the study, and the replication of simulated events similar to the observed ones
is a pre-condition for the use of the model as research tool. But the mere replication is far from
sufficient. The real insight provided by the model derives from the understanding of the simulated
events, a knowledge that, hopefully, can be then transferred to real ones. This process can be
very difficult. The model implemented typically involves a large number of entities interacting in
complex ways. Even though the single interaction is quite simple, even a few non-linearities can
generate hard to predict consequences, in terms of aggregate and/or temporal properties. That
these properties are similar to empirically observed ones, is, in general, little more than a promising
step. In fact, these properties are in general so vaguely defined that a huge number of different
generative processes may reproduce them, and showing that our model is one of these is, per se,
of little relevance. Instead, the research can be a substantial success if we manage not only to
replicate the properties, but also to expose the intermediate steps from the model definition up to
the aggregate or dynamic results. A research based simulation must consist in showing that the
model can replicate the aggregate properties and how these properties are generated.

In other terms, using a model by looking only at its results is like stating the assumptions of a
theorem and associating to them the statement. If the theorem has been proved correct by a trusted
mathematician, we can simply use the theorem by associating the assumptions to the statement
for some other purpose. However, if we are the mathematician working on a conjecture, it is
not sufficient to show that hypothesis and statement are compatible, or that no counter-examples
have been found (so far). We want to provide to proof, that is, the intermediate steps linking the
assumptions to the final statement.

For this latter type of use of simulation models, a black-boxed model is not adequate. The user
of the model needs to be able to peek into the intermediate steps of a simulation run, explore states
of the model when particular conditions arise, and in general being able to interact with the model
at run-time, in ways that cannot be predicted when designing the model. Consider, for example, a
model containing some stochastic element producing 99% of times a given type of result, and 1% of
times, with apparently identical conditions, totally different results. If we were only interested in
the properties of the modelled system, we may simply ignore the rare events and focus on the most
frequently observed results. Instead, if we aim at the understanding of the system, we may need
to discover the chain of (rare) events leading to the exception. After all, many of the interesting
real events in social sciences, like the emergence of a succesful large corporation, are rare events
deserving explanations, while the far more frequent failures of newly funded enterprises is generally
of less importance.

A simulation model, as any model, is meant to provide a simplified representation of a piece
of reality, with a varying degree of abstraction. People often discuss, correctly, whether a given
model is an adequate representation for the reality concerned. The issue is, however, impossible
to resolve by means of any objective concept of “distance” between the model and the evidence
from “nature”, as measures describing the system of interest. A model can be properly assessed
only taking into account two, distinct, aspects. Firstly, and most evidently, the similarity of the
model’s and real system’s properties. Secondly, less obviously but at least as importantly, is the

8

1.5 Methodological issues on simulations asda 9

overall goal of the research project involving the model. In fact, depending on which objective the
researcher is pursuing, the same model may be adequate or not.

People normally tend to assess a model depending how good an approximation it provides to
represent the real system. However, this question can be considered only considering the eventual
class of problems one wants to answer using the model. For example, consider the classical example
of the gravitational model, describing the movements of astronomical bodies as planets. The
Newtonian model has been proven “false” by Einstein’s relativity theory, providing a more accurate
description of the actual observations. Yet, planning space missions within the solar system,
engineers use not the “best” model available, but rely on the “false” model, being extremely more
practical to compute and apply.

In social sciences, where the “real systems” are far less clearly defined than (most) natural
systems, the issue of which goal the model is expected to pursue is extremely important. Models
that have been successfully used for a project may be hopelessly useless for another project, even
though the entities involved are the same. For example, a model representing a market used
to study the effects of technological innovation is likely to contain many redundant elements (as
well as missing crucial aspects) if one is aiming at the study of, say, price dynamics and income
distribution. The design of the model cannot ignore the goal it is supposed to pursue, and different
goals require radically different models of the very same real world entities.

Yet, phenomena studied in social sciences are generally heavily interconnected, so that different
models tackling separate issues individually will need, at least theoretically, to be merged within
a unique framework, if one is interested in representing and studying the interdependencies. The
methodological challenges of how to perform and evaluate the required steps are the object of a
heated debate, that cannot be reported here. However, it is worth to note that there are also
important technical implications concerning the implementation of simulation models in social
sciences. In particular, for a successful use in social sciences, a simulation model needs to be based
on a modular architecture, where different modules can added, removed, or edited depending on
its application. The development of the model is likely to be gradual, in that one starts from
implementing a few components, assess the model’s results, and then proceeds to add a few other
components, adjusting previous parts as necessities emerge. The interconnections among a model’s
elements need to be carefully observed and evaluated, since implementation decisions appearing as
obvious and uncontroversial at a given stage of the model’s development, may subsequently become
an obstacle to its expansion, and may need substantial reprogramming.

Programming languages requiring modellers to make architectural decisions at the initial stage
of the program design, which cannot easily reverted, are not adequate languages for simulation
models in social sciences. Also, languages that blackbox the code within its components, providing
the minimal output hiding the way this output is produced, are efficient from the programming
viewpoint, but are also a nightmare when one needs to trace back the motivation of a given result.
In a typical research project, one implements some modules, meant to be the equivalent of real
world entities, and define some overall rule of interaction among those components. The modeller
then expects given results, in terms of simulated phenomena similar to the real ones. When the
simulated results are substantially different from the expected ones, one needs to find out the reason
for the gap, either to modify the model or the expectations. Without the insight on the reasons
for the model results, a simulation model is yet another generator of research questions, void of
any answer. Stretching this point, suppose having a model reproducing perfectly every datum as
measured in a real world measurement, but unable to tell how these data have been produced. A
researcher will find no additional information from the model in respect of the “real” data set. The
reason for using a model is that one trades some degree of inaccuracy in the data replication in order
to obtain explanations of the (approximated) reproduction of real world observation. Accepting
this point, it is then obvious that the support of the model must be able to provide the technical
means of inspecting and evaluating these explanations.

LSD has the same representational and computational power as any low level programming
language, being, essentially, equivalent to C++. However, LSD models do not require an early stage
design commitment, since the system automatically arranges the simulation steps as required by the
single components and by the state of the rest of the model. This feature minimizes the disruption
to the code caused by any change to the model. Also, the automatically generated documentation
and tracing features allow to expose every single step performed during a simulation run, so that

9

asda 10 Why using LSD?

the user can easily assess which element, or elements, of the model are mostly responsible for
unexpected results. These features make LSD a unique tool not because of its ability to implement
a given model (every reasonably powerful language can do the same), but because it gives the tool
to understand how they were generated.

LSD is a language thought to assist users with any type of research needs. Besides being simple
to use, it provides the speed of execution required for almost all types of modelling approaches.
Also, LSD not only generates large amounts of data, but offer a wide variety of tools to analyse and
compare results, so that, for example, test the robustness of results against random variations or
changes in parameters’ space. Finally, LSD endows automatically any model with a complete set of
tools to inspect the states of the model at any stage of a simulation, allowing to change them on
the fly, or simply plotting intermediate results. LSD models are intrinsically modular, breaking its
components in small bits of code and data, so to facilitate their constructions. However, users of
the model can exploit tools that automatically generate the list of connections linking the different
components, in order to expose how any part of the model may influence other parts. These tools
make LSD unique in avoiding the black-boxing of a model implementation, making this language
particularly adapt to generate simulation for scientific research purposes.

1.6 History of LSD

This paragraph reviews the history of the LSD development with several purposes: for the historical
record; acknowledge the contribution of crucial people; let the reader understand the motivations
for some of the peculiarities of the project. Being a project developed entirely by me, necessarily
the history of LSD includes a good deal of my biography, that I hope the readers would excuse.
The overall goal is to show that the development of LSD has not been intentionally designed but
for a minimal, crucial, core, and that this core proved an unexpected robustness allowing a far
greater number of extensions than originally thought. The extensions are, however, the result of a
more or less random sequence of encounters with needs and problems that were always solved on
a case-by-case basis, maintaining intact the basic architecture of the system.

LSD is still a living project, which is continuously revised at the rate of at least a minor change
per week. As witnessed by the history of its development, LSD evolves by facing new problems and
embodying their solutions, reflecting therefore the needs and skills of the people that happened to
make use of it.

1.6.1 LSD pre-history

My university eduction had been rather solid in quantitative subjects, like mathematics and statis-
tics, but lacked any formal teaching in computer sciences. For the final dissertation I had learned
by self-teaching to program in C and some C++, with the help of friends, books, and a lot of trial
and error. By 1992, when I graduated in Statistical and Economic Sciences, I had developed a few
simulation models on my own, and also collaborated with people working on their own projects,
as my supervisor G.Dosi used to encourage his students to exchange tips and help.

I continued my career with a few contracts on Economic research projects, until, in 1994,
I followed a Master course in Economics at the University of Manchester. Besides the normal
curriculum, the program permitted to select a course from the university without any restrictions.
Causing some troubles to the administration, I opted for a course in the faculty of Computer
Science, so that I attended my only formal course in programming related subjects. It was a
course on “Object Oriented Design”, clearly not meant for Economics’ students. Eventually, I was
suggested by S.Metcalfe to have C.Birchnehall as supervisor for the Master dissertation, whose
title was “Object Oriented Modelling”.

The origins of the LSD project started in 1995 as part of the TED project in IIASA, Laxen-
burg. The project, led by G.Dosi, included many prominent evolutionary economists like Nelson,
Winter, Silverberg, Kaniovski. The staff of the project included, with various commitments, also
other researchers like F.Chiaromonte, W.Fontana, N.Jonard, L.Marengo, and many PhD students
spending time in the Schloss while studying for their projects. Evolutionary Economics has tradi-
tionally seen with favor the use of simulation models, and I was hired with a well specified brief to

10

1.6 History of LSD asda 11

provide a help for the notorious problems afflicting economists in dealing with simulation models.
The task I was given was to implement a Lego-like program allowing programming-illiterate

economists to build and use simulation models. The purported result would have been a sort of
visual interface that users may use to select model components from a library of existing models
to generate fully functioning complete models. For example, one may use the demand component
from model A, the production component from model B and the R&D component from C, and
my theoretical software should have been able to generate the new, patchwork model re-using the
components from the library.

In the first weeks of my spell in IIASA I reached the conclusions that the task I was given was
technically unfeasible. I could show though for an economists the modules of a model may appear
as separated and interchangeable components, from the technical viewpoint the implementation of
a model requires so many interactions to make impossible their interoperability. Unless, of course,
to fix so many technical details that would make the concept of a library of components useless
and the creating of a model from the scratch much simpler. The fundamental problem was (and is)
that the Economists’ representation of a model is generally very vague, while the implementation
of a program to simulate the model requires decisions on many details, apparently technical, but
that drive the model results as much as theoretically relevant aspects.

The environment in IIASA allowed me to be aware of many different research projects, entailing
simulations or without them, as well concerning economic subjects or other issues. I started then
to realize that building a simulation model necessarily requires the modeller get into the coding,
since only at the level of the programming language one can understand what the model does and
the meaning of the model results. Avoiding users the access to the model’s code would possibly
allowing some use of the model results, but would imply the unacceptable black boxing of the
model preventing the scientific exploitation of the model potentiality. Thus, I realized that there
were no opportunities to fulfill the task I was given. Either a package was easy to use, but far too
limited, or it was powerful enough, but too difficult to use.

1.6.2 LSD 0.01

At the this time I hypothesized that writing code for a simulation model is not the same thing as
writing code for a full program, and does not require the same knowledge and experience required
to be a programmer. Most simulation models are composed by trivial computational structure, of
the like you may easily express with only the arithmetic and logical operations that a high-school
student is taught in his math classes. The technically challenging part of a simulation model
concern not the model operations, but the ancillary functions required to perform operations like
data storing and retrieval, results’ manipulation, scheduling of activation for the different model
components, etc. These are all technical aspects whose meaning is trivial to the user of the model,
but that still require a good deal of expertise to implement in a programming language. Could
it be possible to make these technical functionalities automatic? After all, all simulation models
have the similar needs, though differing in their content. Thus, it would be possibly to feed a
pre-designed package with the model-specific part of the program only, and have all the rest fully
working.

I looked around to see whether someone else have already developed at least part of the software
I could re-use, but could not find anything that could fit my purposes. In some cases, simulation
languages admitted too narrowly defined types of models, in effects being generalized models that
users may only partly customized. In other cases, like Swarm, the language required too much
knowledge on the part of the modellers for being used by economists. Moreover, the design of
Swarm was still inspired to the definition of simulation models of computer scientists. That is,
that you need to write a computer program for the model to run. And that, when the model is
implemented, users are prevented from peeking into its inner working, or gaining access to most
of the initialization or results, unless the programmer explicitly bothers to build the interfaces to
provide users with this possibilities.

The goal was to allow modellers to generate a simulation model without bothering with the most
annoying, and complex, tasks of building a simulation program. Still the program implementing
the model was supposed to be highly efficient and flexible, that is, able to implement any type of
model. For this purpose, I had to decide a few strategies.

11

asda 12 Why using LSD?

Firstly, I had to decide what format of a model I should require modellers to express, that is,
the “grammar” to allow my language and the user to share. The most frequently used format to
express a model, a format that both simulators and non-simulators could equally understand, was
the form of mathematical expression of discrete difference equation models. Thus, the task became
to have a sort of “translator” to be fed with a difference equation model to obtain a working
simulation program.

The choice of using of C++ was due partly to the fact that I already this language, partly
because it is the most powerful among the general level languages, and partly because I did not want
to commit my work to a specific platform, and C++ is by far the most portable language available
(I was mainly using Linux at the time, besides Windows and Solaris, for different collaborations).
From the start I had decided the major features I wanted for the language.

The basic design of LSD (still did not have a name) was then decided. The language was
supposed to be an incomplete C++ simulation program, that the user was supposed to fill with
the equations. The definition of the data structure derived from this basic design, as I discovered
attempting to implement test models with the earlier prototypes.

I considered by approach rather promising. The core of the system was able to “digest” sparse
equations and turn them into a coherent sequence of steps. Also, the models implemented in
such a way were extremely fast and scalable, since the data structure was separated from the code,
besides re-usable. I tested the prototypes trying to implement various models, and all of them could
easily and quickly be implemented with my tool. As I requested, the only information users were
requested to insert were the data structure and the equations, expressed as generalized difference
equations, while the system turned this into a fully working model.

At the beginning I had some troubles making other people in the project accepting my work
as a success. For some, the programmers, there was only limited interest in having yet another
language, since they could develop their program themselves already. Non-programmers had a hard
time to understand how a restricted C++ could be any more useful than the real thing, besides
maintaining all the difficulty of creating a C++ program. In effect, at the time no graphical
interface was yet available, and the user was supposed to prepare the data to feed the models in
text file.

Though it was simple for me to prepare the text files according to the standard required by my
program, other users spent far too much time learning them than was worth the effort. Therefore, I
started to work on the graphical user interfaces, using the only language that at the time provided
graphical tools across different platforms, Tcl/Tk. Even if the earlier interfaces were pretty basic,
they relieved the users from managing text files for the model data, therefore steeply decreasing
the time required to test the model and produce relevant results.

Eventually I managed to receive sufficient consensus to have the go-ahead from the project
leaders, though the acronym of the program was imposed as to signal the difficulty in relating
what I had done so far with the original task of facilitating the development of simulations (the
acronym meaning had to be worked out later).

Since the earlier prototypes I was developing models using LSD for testing the system limits, for
my own research and for other researchers, typically PhD students. Since then I have continued
to improve the embedded functionalities according to the difficulties I encountered. In fact, a
LSD model is essentially an interface to generate a C++ model. Whenever I found a particular
computational part of a model that I could not easily implement with the existing tools, I simply
moved to implement a fix in C++, assuming it was a one-off problem with that particular model.
However, when I had to replicate the same solution for another model, I could simply include a
generalized version of the solution in the library of LSD commands.

A major improvement of the system occurred when the system sufficiently advanced to generate
massive amount of data for relatively complex models. Up to that point, I used to have LSD

generating results as text files, to be uploaded in a graphical package or a data sheet for plotting
or statistics. But this working method could not be applied as soon as the simulation entailed
tens of thousands of data for thousands of series. In such cases the few thousands of lines and
dozens of columns available in Excel did not suffice to contain the model results. Other packages
were too cumbersome to be used systematically, taking far more time to plot a series than to
generate a whole simulation. I decided therefore to implement within LSD a graphical module, able
to treat these data sets. The Analysis of Result module turned out to be highly useful not only

12

1.6 History of LSD asda 13

for being able to manage large amount of data, but also smaller data sets. In fact, I discovered
that although other tools were available, the integration of equations’ writing, model constructions
and data analysis in a single package improved sensibly not only the speed but also the quality of
the use of simulations. In fact, the few minutes lost switching from one software to another, when
cumulated for even a few passages and multiplied by the number of potentially relevant tests, make
impossible to keep the concentration on the scientific content of the model, and make unappealing
the testing of a large portion of the space of possibilities allowed by flexibility of the simulation
tool. Instead, when implementing a particular version of the model, generating the results and
observing them can be done within a single, quick operation, one is pressed to explore in a far
greater detail the potentiality of the model.

1.6.3 LSD in use

In the fall of 1997 I left IIASA to start a PhD program in Aalborg, Denmark, under the supervision
of Eben S.Andersen, an expert programmer besides a knowledgeable economist. The thesis project
was agreed as being focused partly on simulations’ methodology, besides the core on Economic
issues. During the PhD period I started to work heavily on LSD as a user, and less as developer.
Still, the overall system kept on growing and generally improving continuously. In fact, I was
keeping on implementing models for my own thesis, besides models for single papers and teaching.
For example, I held a 10 days workshop in Aalborg on LSD and simulations, teaching to about 10
students how to use simulations with LSD. This workshop provided the blueprint for the following
courses I held on the same topic. As a result of the improvements in this period I added a few
new commands to the LSD equations’ language, but mainly improved the interfaces facilitating the
standard use of LSD. In fact, I realized that one of the problems hindering the use of simulations
is due to the difficulty in reading the very content of the model. This is an obvious difficulty
for users other than the original modeller, but also for the very same modeller when he or she
is working on many projects, possibly returning to an unfinished project after some time spent
on other activities. The intricacies of programming languages, the obvious interactions between
model components, and the mixture of model-related code with technical code (necessary for the
program, but not the model) is at the base of this difficulty, so that, for example, even expert
programmers have a hard time reading the overall sense of unfamiliar code. I realized that LSD

could tackle the “dissemination” issue relatively easily given the internal structure of a model,
already modularized. Prodded by Esben, I implemented a series of interfaces that allow to inspect
the model easily and fully, even for non-programmers, so that LSD itself became a sort of reading
interface. Moreover, I also implemented the reporting module, generating automatically a hyper-
textual document fully describing the model in various formats, including one totally devoid of
code but fully documenting the model elements, values and interactions. These tools have proved
to be highly valuable to inspect a model and prepare their documentations, e.g. for the appendix
of a paper. Also, they allow to immediately understand which parts of a model would be affected
modifying one component.

After finishing my PhD I was shortly employed by the Italian National Statistical Office, before
being given a Post-doc contract in the University of Trento (with Luigi Marengo). Eventually, I
won my current position as researcher at the University of L’Aquila. In these most recent years
I have been continuing to upgrade LSD as new necessities emerged. Besides using intensively the
system myself, I have held regularly a weed-long course on simulations with LSD. The students
have been mainly PhD students in Economics, though occasionally there were also people from
management and other disciplines. Teaching students have been a great source of inspiration
concerning how to upgrade LSD. First of all, the sheer variety of the models interesting students
has been a major test for the capacity of LSD to implement models beyond those of my own interest.
Also, I may appreciate directly how the interfaces of LSD were effective for users other than me,
improving sensibly the usability of LSD for the general audience it is intended to. Lastly, it gave
me the opportunity to establish long lasting collaborations with former students who carried on to
work on LSD even beyond their short term projects. In this way I had the chance to “hire” T.Ciarli
and A.Lorentz as collaborators as well as teachers and expert users (and critic) of LSD.

In summary, is, at the same time, a single-person project but also the collective product of a
wide and diverse community. In fact, on the one hand I did develop all the code myself, according

13

asda 14 Why using LSD?

to a few basic principles and an overall design. On the other hand, many of the LSD features
have been directly motivated or inspired by repeated observations of different people’s needs, and
therefore, LSD reflects necessarily what people wanted from a simulation language.

14

Chapter 2

Features of Laboratory for
Simulation Development

A simulation language serves two purposes. On the one hand, it allows the human user to tell the
computer how to generate the sequence of values; that is, program the simulation model. On the
other hand, it serves to format the simulation output such that the results can be accessed by the
user.

The activity to implement simulation models for research purposes is a continuous process
of testing potentially interesting computational structure, observing the results, evaluating their
relevance for the goal of the research, and consequently editing the model, re-staring the cycle of
other results, evaluation editing etc.

The vast majority of simulation models are extremely simple computational structure, whose
code can be easily written in a matter of few hours, or days in the most complex cases. Moreover, the
computational content of a model is generally extremely simple: arithmetic and logical operations
compose the vast majority of a simulation model’s code. The really though task with simulations is
the necessary technical code necessary to have the model actually computed and to access its result.
That is, the code managing the simulation time, setting the initial values, saving the relevant data,
understanding the inner mechanisms determined implicitly by the model’s equations, capturing
errors, etc. Without such technical code the computational power of computers is as useless as a
Ferrary engine mounted on a shopping trolley.

The major features of LSD from the perspective of building a simulation models are the follow-
ing. Firstly, LSD allows users to access the full power of their computers, without constraints of
dimensions, speed and content besides those imposed by the hardware. For this purpose, LSD relies
on the C++ language, generating, in effect, a C++ compiled code program. Secondly, it minimizes
the information users need to provide in order to construct a simulation model. Whenever possible,
LSD tries to induce the intention of the user without requiring redundant information. Thirdly, LSD

adopts a format of models as close as possible to the way people imagine models in their mind, not
to the program implementing them.

The format of models used in LSD is inspired to the systems of discrete difference equations.
The best way to think of a model is a number of equations, expressed as an algorithm used to
compute the value of a specific type of variable at a generic time step. The task of LSD is to analyse
the equations supplied by the modeller and produce automatically a computer program producing
series of values for each variable. The program generated is complete with the all the interfaces
necessary to control every possible aspect of the model, such as providing initial data and analyse
the results. The automatic interfaces are automatically customized on the model content, and can
equally deal with the simple experimental models tested by novices and with huge models run on
super-computing centers.

The two sets of interfaces, from the user to the computer and the other way around, are a
powerful tool allowing to generate quickly models and making sense easily of their results. Possibly
the stronger advantage of LSD is that the two operations are strongly integrated. The evaluation
of results from a model leads to the editing of some part of the model, which would generate

15

asda 16 Features of Laboratory for Simulation Development

other results, for other modifications and so on. The strong integration makes the development
of a project impressively faster, in respect of languages requiring two different sets of tools for
implementing the model and for analysing its data.

In this section we define some broad properties of simulation models and assess LSD against
them. In particular, we will propose a sort of “normal form” for simulation models, a minimal
description containing all the information required to replicate the results of a simulation model.
In the final part we will introduce the basic components of the LSD package and their functioning,
terminating with the instructions to install the system and testing it with a basic simulation run.

2.1 Simulation Model elements

There are many different languages to implement a simulation model, and even more formats to
express them. In the following we propose a generalized format to define the content of a model. We
claim tha the elements necessary to fully describe a model, whatever language is used to implement
it, are the following:

• Variables
– Label: a text identifying uniquely the type the variable.
– Equation: a routine computed once and only once at each time step returning the value

for the variable.
– Initial values: values used in the earlier time steps to be used as past values for the

variable.

• Functions
– Label: a text identifying uniquely the type the function.
– Equation: a routine computed any time, and only, the function is called by other ele-

ments of the model.
– Initial values: values used in the earlier time steps to be used as previously computed

values for the function.

• Parameters
– Label: a text identifying uniquely the parameter.
– Initial values: value assigned to the parameter.

• Objects
– Label: a text identifying uniquely the object.
– Content: list of variables, functions, parameters and other objects contained in the

object.

We call the structure of a model a set of objects hierarchically connected each containing a
set of variables, parameters and functions. The structure of a model defines univocally the
computational content of a model, but it is still not sufficient to produce results. For this we
need to add to the structure the numerical specification for each element.

• Initialization
– Number of objects
– Initial values for lagged variables and functions, and for parameters
– Contextual initialization (e.g. num. of time steps, pseudo-random number series, etc.)

The joint definition of a structure and of the initialization provides a configuration, which
substantially provides a fully specified simulation model producing always the same results inde-
pendently from the language used for the implementation. Before exploring the LSD interfaces we
give provide below a slightly more detailed definition of the model elements.

2.1.1 Variables

The variables are the real core of a model. They can be thought simply as a label to which are
associated a series of values for each of the time step of the simulation. Variables generate values
by means of an algorithm computed once, and only once, for each time step, and returning a single
value.

Some variables may need to be initialized before the start of a simulation run. In fact, in most
cases models compute variables as elaboration of other values produced in previous time step of the
simulation. At the very beginning of the simulation, during the first computation of the algorithms
for the variables, there are no past values, and therefore the user needs to provide these values.

16

2.1 Simulation Model elements asda 17

2.1.2 Functions

In some cases a simulation requires to produce numerical values that are independent from time,
but are simply functions that produce values upon request by some other events in the model.
The different with variables depends on the timing of their computation, that is the use of the
associated algorithm used to compute a numerical result. While a variable needs to have one, and
only one, numerical value for each time step (and therefore its algorithm is computed once, and
only once, at every time step), a function needs to provides a fresh result from its algorithm only
when requested. This may, possibly mean several times in a single time, or none.

2.1.3 Parameters

Parameters are elements that do not change value of their own accord. In most of cases parameters
are assigned an initial value before the beginning and maintain it throughout the whole simulation
run.1

2.1.4 Objects

Most cases modelers find convenient to define a model element (say, a variable) and implement
a whole set of copies of the same variable, sharing the same name and equation, but producing
independent values.

While vectors are a common format to implement multiple copies, they have several drawbacks
advising against their use in programming. In the past most programming languages moved to
adopt an object-based approach. Intuitively, objects allow the equivalent of matrices with rows
containing potentially a different number of columns, or other matrices of varying dimensions.

The best way to think of objects is to consider their difference with vectors. Suppose you need
three elements: X, Y and Z. If you wish to have many copies, N , for each element, then you
would need to define three vectors, each of which needs to be independently managed.

Object1 Object2 ... ObjectN
~X X1 X2 XN

~Y Y1 Y2 YN
~Z Z1 Z2 ZN

Table 2.1: Vectors (listed horizontally) are sets of elements of the same nature, while objects (listed
vertically) are collections of elements of different nature. In both cases we can express sets of copies of the
same elements, but objects are more convenient for programming in general, and simulations in particular.

Using an object-based approach you define objects, that is, containers, each storing one copy of
the elements. Creating many copies of the objects ensures that the numerosity of the elements is
correct, and facilitates also the access of elements associated to the same copy of the object.

The great advantage of the objects is the possibility to use a nested structure where some
objects contain, besides their own variables and parameters, other objects, forming a hierarchical
structure on multiple levels.

An object structure permits to implement more easily the reality modelled in a consistent way,
where aggregate objects are formed by smaller, component elements, which in turn may be formed
by other smaller elements. For example, a model may be composed by an object Market which
contains many objects Firms, which, in turn, are formed by several Departments.

The object structure of a model forms a much easier to understand way to represent most of
the realities observed. Moreover, it is also a very handy way to manage the problem of determining
the number of the variables required in a model. For example, the above mentioned structured
allows users to easily increment the number of firms in the model by changing the number of this
objects. Instead, in a vector-based language it would be required to increase the dimension of all
the vectors for the elements defining a firm, and those defining departments.

1Exceptionally, however, parameters may be overwritten during the calculation of the equation for some variable
or function. This is typically the case of equations producing several results in a single computation. Since variables
can store only one value, any additional result is stored in appropriately defined parameters.

17

asda 18 Features of Laboratory for Simulation Development

2.1.5 Data required for a simulation run

A simulation model described in terms of its elements and its code can produce different results
depending on the numerical values used to initialize it. This paragraph lists the class of values
composing the initialization of a model.

Number of objects For all object types present in the model it is necessary to specify how
many copies must be included in the model. Note that if the object structure of the model
contains many levels (e.g. object Market containing object Supply and Demand; Supply contains
Firms and Demand contains Consumers, etc.), the number of objects must be specified for each
group, subgroup and so on.

Initial values Before starting a simulation it is necessary to provide values for all the parameters
of the model. Moreover, it is also necessary to provide the “past” values for those variables which
are used with a lag in the equation of other variables. These values will be used in the earliest
time steps of a simulation, where the “past” values could not be computed, and must be provided
by the modeller.

Simulation settings The most obvious setting is the number of time steps the simulation must
execute. Another important setting consist in the “seed”. This value affects the simulation if
random numbers are used. In fact, computers provide so called pseudo-random values. These are
series of values that appear as if they were drawn from a random function2. The seed is a code
such that the series obtained from the same seed are identical. This option permits to re-create
identical (pseudo-)random events, if the same seed is used, or different ones for different seeds.

2.2 Overview of the LSD package

The LSD format for a model is identical to the format defined above, providing suitable interfaces to
supply each piece of requested information, and automatically inferring from these all the technical
details necessary to produce a working simulation program implementing the abstract model.

A LSD model is defined by three sets of elements:

• Equations: the only code modellers need to provide consists of independent chunks of code
expressing how the values of the variables in the model must compute their value. As in a
difference equation model, the equations are expressed as the computation to be performed
in a generic time step for a generic copy of the variable.

• Model configuration:

– Model structure: the modeller needs to define the labels the objects, parameters,
variables and functions. A structure is a generalized model, still lacking the numerical
definitions required to run a simulation.

– Initial data: To run a simulation is necessary to complete the model structure with
the values necessary to start a simulation run: number of objects, parameters’ values,
number of time steps, etc. A given model structure may be used to generate many
configurations using different numerical values.

All the above components of the model can be produced in a variety of ways (eventually, they
consist of text files, so that any text editor may be used). However, an extensive set of tools
and interfaces assists the modeler in inserting quickly and efficiently the required information,
minimizing the possibility of typing mistakes and easily allowing modifications.

The computational part of a model, that is the equations, are written using an editor specifically
built for LSD, called LSD Model Manager, LMM. Using LMM modelers write the equations as short
chunks of code, and the turn these equations in a LSD model program. LMM takes care of the
compilation, the process of turning the C++ code (both the system code and the model-specific
equations) into the executable. In case of failure, compilation issues detailed messages on which
part of the code contains errors. Figure 2.1 describes these steps.

2Computer languages provide several random functions, generally derived from the uniform [0,1] random function.

18

2.2 Overview of the LSD package asda 19

Figure 2.1: Overview of the functionalities provided by LMM, a special-purpose editor for LSD equations.
LMM takes care compiling the model equations and tries to produce a LSD Model program, using the LSD

system code. On success it runs the resulting program.

Figure 2.2: Overview of the functionalities the LSD model program. They concern the definition and
modification of configurations, generating and managing results, documenting the content of the model.

After a successful compilation LMM automatically starts the resulting program, a LSD model
program capable of computing the equations. This program is used for any activity on the model
besides those concerning the equations. It allows the definition of the model configuration, run
simulations, analyse the results, etc. (see figure 2.2). The same program also manages files storing
different configurations (e.g for different initializations of the model), the documentation and the
export of results. The interfaces of the programs are all identical, so that a user experienced in
one model will be immediately able to explore and exploit a different model, focusing exclusively
on the content of the model.

In the following we provide a broad description of the functions contained in LMM and in the
LSD model programs.

2.2.1 LSD Model Manager - LMM

LMM is a program helping modelers to perform all the operations required to generate a LSD model
program. In particular, it manages the technical details of the C++ files related to the compilation
process, so that users do not need to pay any attention to the underlining C++ layers, and have
friendly interfaces for specific purposes, such as compiling optimized code.

Managing simulation projects A simulation project generates, besides the model itself, result
files, documentation, several configurations. A research project may be composed of several, inter-

19

asda 20 Features of Laboratory for Simulation Development

mediate models, each of those relevant to be saved for potential future re-use. Finished projects
may need to be reviewed, or continued. In practice, this means to deal with dozens, or hundreds
of files, which easily generate enormous confusion unless properly organized.

LMM assists users in the proper housekeeping of simulation projects. When a new project is
created, LMM generates a new directory and all the files necessary to start working on model. File
names and directory locations are automatically managed, minimizing the possibility of confusion.
Model projects are presented by a browser that, although relying on the directory structure on the
disk, presents existing models showing their extended names and descriptions, so to easily find the
desired project even in a disk crowded with models. Moreover, it is possible to generate groups of
related models, or generating an identical copy an existing project to test modifications without
risking the current version. LMM allows also to compare different models, showing the differences
in the code between two different versions of the same project.

During the work on a simulation model, LMM automatically generates all the technical files
required to use the C++ underlining machinery. These files, containing, for example, the compila-
tion options, can be ignored by the users or modified. Furthermore, any relevant information (e.g.
compiler’s error messages) are presented and saved automatically by LMM.

Generating the model’s code Concerning the main role of LMM, the generation of a model’s
code, LMM offers an editor particularly suited for LSD models. For example, it contains short-
cuts that LSD modellers can use to insert automatically (i.e. error-free) the most frequently used
keywords for LSD equations, so that users need only to choose the desired function and type only
model-specific text (i.e. the names of the variables). The LMM editor offers automatic indentation,
text coloring and parenthesis matching features, besides an extensive on-line help concerning the
equations’ grammar, useful to develop LSD equations’ code.

LMM also manages to transform the file of a model equations into a LSD model program, that
is, to compile the equations and build the program containing them. This operation consists in
using several programs to generate executable files from C++ code, adding the libraries required
by the operative system, etc. LMM avoid users to pay any attention to these operations, though it
allows expert users to modify any compilation option (e.g. optimization levels, inclusion of external
libraries, etc.).

The output of the compilation depends on the whether errors have been found during the com-
pilation process. If the equation file contains illegal code (typically, typing mistakes or missing
parenthesis), then a window presents the user with the list of errors and any information avail-
able to fix them. Otherwise, a successful compilation generates a LSD model program which is
automatically launched.

2.2.2 LSD model programs

LSD model programs are are used for any operation concerning a simulation model besides the
writing of equations. Here is a short summary.

Define, save and load configurations An extensive set of graphical interfaces allow to define
the label of the model elements and any required information. The interfaces are easy to use and
automatically adapted to represent the the information already contained in the model. For ex-
ample, they prevent the definition of a new element with a label already used for another element.
The number of values to be introduced is automatically determined, depending on the number of
objects present in the model. Models with large number of elements (requiring, for example, mil-
lions of parameters to initialize) can use automatic functions to generate commonly used patterns,
or load data from external files.

Configurations are stored as text files, which can be loaded, edited and renamed at any moment.

Document the model LSD model programs are themselves tools to observe the model efficiently
and in any detail. The central window focuses on a single object, presenting all the elements
contained, while a graphical representation shows the full structure of the model, allowing to easily
moves across different objects. User can request any detail for any element, for example asking

20

2.3 Technical requirements asda 21

how many variables make use of a given parameter, their labels and position in the model, and
even showing their very code (but not, as repeatedly said, modify the code, since this is compiled
into the very LSD model program).

The description of a model can also be generated in a format that dispense from the use of
LSD altogether, for example to generate an appendix to a paper. With a single command it is
possible to upload as comments to each model element all the information contained in the model
equations and in the model configuration. The comments are then used to generate a HTML file
listing all the element of the model, the numerical initialization and their relations as hyperlinks.
The structure of the file, called model report, allows the inspection from different perspectives,
like a brief overview based on short comments only, or the detailed computational content of the
equations. Therefore, even non-programmers can appreciate the content of large and complicated
models.

Initializing models Assigning initial values can be a rather messy business when the model
contains objects at several hierarchical levels and requiring thousands or millions of values. LSD

offers highly efficient interfaces that are, at the same time, extremely simple to use and able to
perform highly sophisticated elaborations.

Controlling simulation runs During a simulation run users can observe a graphical represen-
tation of a few series, interrupt the simulation on request or under pre-determined cases, inspect
or modify the state of the model, perform a full analysis intermediate results, and continue the
simulation.

Moreover, configurations may impose multiple runs each independently starting at the end of
the previous one, saving result files for later use.

Managing simulation errors When all the elements required for a simulation run have been
defined (the system prevents incomplete simulations from running, signalling the missing elements),
the LSD model program turns into a run-time environment controlling for errors. Events like a
division by zero, the request of values from a non-existing parameter, logical inconsistencies, etc.
generate an extensive list of information on the conditions generating the error and possible fixes.
Also, any data produced up to the emergence of the error can be retrieved and analysed.

Managing simulation results Results from a simulation models come in two, related forms.
Firstly, and obviously, they take the form of the time series generated during a simulation run.
Secondly, and frequently crucially, scientifically relevant knowledge is gained investigating the
internal dynamics of the model, understanding how the model managed to generate particular,
unexpected states.

Concerning the first type of results LSD model programs are endowed with an efficient module to
produce graphical and statistical elaborations of the series generated. This module is particularly
suited to deal with vast amount of data, ranging in the tens of thousands of series, each composed
by tens of thousands of elements. It is possible to generate time series, cross-section and scatter
(2D and 3D) plots, distributional histograms, and various descriptive statistics. The module allows
to export graphs and data, in standard formats compatible with mostly used word processing and
statistical packages.

Concerning the internal investigation during a simulation run, users can interrupt a simulation
at any moment (or instruct the system to do so under specific conditions), analyse teh state of
any single element of the model, use the analysis module on the partial data and return to the
simulation, continue the simulation step-by-step, and modify every element.

2.3 Technical requirements

LSD is designed to run on Windows, Linux and MacOSX platforms, without requiring other software

21

asda 22 Features of Laboratory for Simulation Development

than those distributed, or otherwise commonly found on standard installations3 In the following
are listed the packages exploited by LSD. This paragraph is not strictly required for using LSD.
Uninterested readers should be satisfied knowing that all these packages are, like LSD, open source
software available for free, although specific legal terms may apply for some accompanying package.

LSD model programs require a standard GNU C++ compiler, using only standard libraries,
and the Tcl/Tk windowing language. Moreover, if available, LMM provides access to GDB for
debugging models at source level4. The help pages are shown using the HTML browser available
on the system, while the analysis of results needs GNUPLOT to create some types of scanner-plot
graphs.

The Linux distribution includes only the code for LSD and LMM, which must be compiled with
a makefile file. Therefore, Linux users must ensure to have installed the compiler and Tcl/Tk.
Both packages, if not already present, can be usually installed using the local package manager.
Although not strictly required, it is strongly suggested to have installed GDB and GNUPLOT.

The Windows distribution includes all the software required, namely the C++ compiler (GNU
compatible) and all the accompanying libraries and software (e.g. makefile, linker, libraries etc.) .
The MinGW distribution (Minimal GNU for Windows, www.mingw.org) has provided the compiler
and all the software necessary for compilation, including the standard libraries, and GDB. Tcl/Tk is
partly taken from its own Windows distribution and partly (the static libraries) has been compiled
on purpose for LSD. WGNUPLOT is a port of GNUPLOT under Windows.

LSD, LMM are copyright by Marco Valente, and are distributed under the GNU GPL (that is,
you can use and distribute it for free), like most of the software required and/or distributed by
LSD. See the licenses for each specific software for further details.

2.4 Installation

2.4.1 Windows platforms

The installation consists simply in unpacking the LSD files that are structured in a root directory
(e.g. C:
LSD) and several subdirectories for the models, manuals, compiler and source code. The root
directory needs to be located in a directory not containing any space in its name, nor to within
parent directories with such names. For example, C:
Documents and Settings

LSD cannot work
When the installation is completed run the file run.bat in the installation directory. This will

run LMM (LSD Model Manager) that allows to create new models, or select existing models.
Control that the root directory and all its descending directories must have the write permission.

If you copied the directory structure from a CD, for example, you may need to set the properties
on the hard disk so to be able to write in the directories.

If you move the LSD directory structure in a different location a warning will appear. When
LMM starts follow the instructions to fix this problem.

2.4.2 Linux and Unix-based plaftorms

Unpack the distributed file, which may be a zip or a tgz package, and move into the LSD root
directory. The objective is to compile the file LMM, which probably requires some testing. Once
this program runs, then the rest of the system requires only minor adjusting, if any.

First of all, ensure that you have installed Tcl/Tk (possibly, even the development packages).
To do this try to run the program wish. If this program does not exist you need to install it
(download the package from http://www.tcl.tk/software/tcltk/downloadnow84.tml and follow the
instructions to compile and install the system).

3Unix users are expected to have a standard Linux box with installed the C++ compiler and its standard libraries.
The LSD distribution for MS Windows includes all the software required.

4GDB permits to observe the running of a program line-by-line. LSD model programs include a debugging function
that gives access to a simulation equation-by-equation.

22

2.5 LSD Model Manager - A first look asda 23

If Tcl/Tk is installed on your system try the command: make -f makefile.ln in the root
directory. If the compilation succeeds, then you have the file LMM. Type .LMM to run it.

If the compilation fails the most likely reason is that the required elements of Tcl/Tk are located
in a non-standard place (different distributions locate the files in different places). This compilation
error is characterized by the compiler issuing thousands of errors concerning “tclXXX” functions
not found, besides others.

The required files are:

- libtclX.Y.a: Tcl library - libtkX.Y..a: Tk library - tcl.h: Tcl header - tk.h: Tk header.

where X.Y are the numbers for the major and minor revisions of the package.

The default locations for these files are /usr/lib for the two libraries and /usr/include/tclX.Y

for the two headers. If the files are not in that position try /usr/local/lib and the equivalent
for the headers.

If the files are not in the default locations, edit the makefile.ln file and change the variables
in the following positions:

PATH_TCL_LIB=/usr/lib

PATH_TK_LIB=/usr/lib

PATH_TK_HEADER=/usr/include/tclX.Y

PATH_TCL_HEADER=/usr/include/tclX.Y

If you needed to edit the makefile, when LMM starts, select a model and choose Model/System

compilation options. Edit the same lines above shown by LMM, and any subsequent generation of
LSD models will use the same information.

Note that the version numbers for the packages of Tcl/Tk may change in the future (currently
is available the beta version 8.5). LSD tries in general to upgrade to the most recent version of
Tcl/Tk, to avoid users to maintain obsolete libraries, though this needs some time.

Besides problems with the Tcl/Tk library, in some cases there are also other types of problems,
caused by the local GNU compiler to require specific libraries. Compilation error messages generally
make clear the missing library. Both the makefile for LMM and the system options within LMM
allow to set additional libraries, if required by your system. Set them in DUMMY=, which is an
argument passed to the compiler when linking the final executable.

2.4.3 MacOS

On Mac OS systems slightly different installations are required depending on the version of the
system. Moreover, Mac users can opt for either a native graphics or use the X11 environment, in
effect using the Unix layer at the core of the Mac OSX. Detailed information are available in the
LSD forum at www.labsimdev.org.

2.5 LSD Model Manager - A first look

The first step in using LSD models is to run the LSD Model Manager. LMM is basically a text
editor, with added a set of commands used to manage LSD model projects. When LMM starts you
are offered three choices: operate on LSD models, open a text file, or create a text file. Choosing
to browse LSD models a new window shows the set of models available (see figure 2.3)

This browser shows the models available in the current LSD installation and permits to create
the structure of new ones. Models are contained in single directories, which can be located in
“groups” containing related models. The Model Browser allows to navigate through the installed
models: clicking on the label of a group the browser shows the content of that group. Clicking on
the label for a model, that model is selected.

The browser’ menu Edit permits to create models or groups, to copy models from one group to
another (or to the same group with a different name), and to delete models.

The distribution includes two major groups: the “Example Models” group, containing several
models of different types, and a “Work” directory. While exploring the distributed models you can
read a brief description of the models. If you select one of the model, LMM quits the browser and is

23

asda 24 Features of Laboratory for Simulation Development

Figure 2.3: LSD Model Manager - Model Browser

ready to work with that model. In case you want to use another model, in the menu Model/Browse

Models in the LMM menu bar, you can access again the models’ browser5.
To quit the Model Browser you can: select one of the existing models and double-click on its

name (or pressing enter on the keyboard when highlighted); generate a new model, using the model
browser menu Edit/New Model; simply exiting (key Esc). As exercise, select a model, for example,
the model “Linear Growth” model, stored in group “Example Models/Exercises”.

When opening an existing model LMM shows initially a text file supposed to contain a verbal
description of the model (see figure 2.4). The LMM appearance is that of a standard editor, but
for the menu Model and for a header below the menu bar.

The header of the LMM window shows the group containing the model, model name and its
version number6, and the file currently loaded in LMM. The last element of the header shows the
line and column position of the cursor in the editor.

The menu File deals with the text files loaded into the editor. Menu Edit, besides the usual
commands, contains several functions particularly useful when writing C++ and LSD code. Menu
Model allows users to issue any command related to LSD model programs. Finally, menu Help gives
access to pages of the LMM manual, which is written as a set of standard HTML pages connected
with hyper-links.

Notice that most of the entries in the menus are endowed with shortcuts, so that it is possible
(and much faster) to activate the corresponding command using the keyboard rather than the
mouse. Moreover, the secondary button of the mouse (usually the right one) clicked on the LMM
editing windows opens a short menu for frequently used commands. To get the documentation
concerning a specific command open the LMM manual page and follow the link to the command.

5A copy of LMM can manage only one model per time. It is possible to run multiple copies of LMM to work in
parallel on two different models (e.g. to copy code from one model into another one).

6The version number of a model is used only to distinguish models. Two models with the same name and different
ver. number are completely independent, although presumably the one with the higher version has been developed
after the other one.

24

2.5 LSD Model Manager - A first look asda 25

Figure 2.4: LSD Model Manager

25

asda 26 Features of Laboratory for Simulation Development

26

Chapter 3

Example 1 - Random Walk

In order to start familiarizing with the interfaces for LSD, this section describes how to use an
existing model, ignoring the task of coding the computational part of a model. Using the code
written by a modeller it is possible to run pre-configured simulations, analysing the results and
editing the configuration to generate new results. The example will also show a particular feature of
LSD, due to the separation of the computational part of a model (its equations) from its structural
part (objects, variables, etc.). In particular, we will see that the same computational content can
be re-used in different models by simply changing the configurations. The independency of com-
putational content from the rest of a model definition allows different data structures (containing
always the same variables) to generate a variety of models.

3.1 Random walk

Let’s start by analysing an extremely simple model, composed by two equations only:

Xt = Xt−1 +Rt

Rt = U(min,Max)

where U(min,max) is a function producing a random value in the specified range with a
uniform probability distribution. Variable X is called a random walk, since it makes steps in
random directions, but the cumulated effects of the past generates the umpredictability of the
final point of the process for large t’s. This variable is a good representation of many economic
phenomena, mixing random events with a “memory” of past ones. We will play with the code for
this equation observing how different configurations can exploit the same computational content
expressed, as the norm in LSD, in a general format.

The actual content of a LSD model is divided in two parts. A so-called equation file contains
the computational content of the model, expressed as one block of code for each variable of the
model. One or more other files contain configurations of models, describing every other piece of
information required to define a model: the elements used, initial values, number of steps, etc. The
equation files must be compiled into a LSD model program, which is a stand-alone program with
the ability to perform the computations contained in the equations and can generate and use the
configuration files to produce simulation runs. LMM is the a program that permits users to write
the equations (or use existing equation files) and compiles the LSD model programs. In this exercise
we will use the same set of equations, and therefore the same LSD model program. However, loading
different configuration files we will actually produce simulations for different models, highlighting
the power of LSD stemming from the separation of the computational content of a model from the
definition of its elements.

Open LMM, clicking on the run.bat file in the LSD root directory1 A small window will offer
three options. Choose to browse existing models, go in the group Example Models/Manual and select

1Unix and MacOS users need to enter the command ./LMM from a terminal or click on its icon contained in the
LSD installation directory.

27

asda 28 Example 1 - Random Walk

the model Random Walk. The LMM editor will present a description file, used by the modeller to
summarize the content of the model.

Curious readers may want to observe the equation file, though this is not necessary. In fact, any
model in LSD is managed by LMM, that “knows” how the equation file is called and can therefore
generate the LSD model program containing the equations. Using the LMM menu entry Run/Show

equations the editor will show the equations. Note that the code of a LSD model is composed of
independent equations, much like translations of the model as described above in mathematical
symbols and labels. One equation must be considered as the general capacity to execute certain
operations, and this capacity is associated to a label (all equations must therefore be given unique
labels). Each block is independent from the others, and the relative positions of the blocks (being
upper or lower in the equation file) is not relevant for the results produced2.

In the LMM window use menu Model/Run model to compile and run the LSD model program
for this model, and the LSD model program will appear3 . The LMM window in the background
can be ignored as long as we are working with this model, since all operations on the model not
concerning the editing of the equations are performed using the LSD model program: definition of
the model entities, initialization, running simulations etc. All the information required to start a
simulation is saved in files, called configuration files (extension .lsd), that can be loaded into a
LSD model program to re-create a simulation run.

Any LSD model program has the same appearance, with a window called “browser” and a “log”
window. The latter window is used only to pass messages from the system to the user and control
the simulation while it runs (e.g. interrupting or stopping a simulation). We will mostly ignore the
log window, since the simulations for such a simple model are too fast to allow for any intervention
at run time.

A LSD model is presented by an interface based on LSD objects, the browser. The browser
constantly shows the content of one type of object, to which any command refers to (e.g. add a
new variable, or set the initial values). When the LSD model program is just opened the LSD browser
shows the only object necessarily present in any LSD model, called Root. Any other object must
be located as descending from (that is, contained into) this object, or one of its descendants. The
browser shows the content of an object, that is, its variables (and other elements, as parameters),
on the left-hand list, and objects, on the right-hand list. The menus on the top of the browser
allow to pass commands to the LSD model program.

A LSD model program can load any configuration, although it can execute only simulation
runs using the equations with which it has been compiled. In other terms, a LSD model program
cannot modify the equations it contains, but needs to be re-created to include new or modified
equations. Any other aspect of a simulation besides the equation is instead defined, observed and,
possibly, modified using the LSD model program, which can store such information in so-called
configuration file. A configuration contains all the information (besides the equations), relevant to
start a simulation run and manage its results. In the LSD browser use menu File/Load to load a
configuration4. There are many configuration files in the model directory; choose the file Sim1.lsd.

When a configuration is loaded into a LSD model program a new window appears. It provides
a graphical representation of the objects’ structure of the model, and is endowed with features for
investigating the model. As you can see the model structure of the presently loaded configuration
is composed by only one type of object5, called Obj1. Also, the browser shows that the object
Root containing the object Obj1. Double-click on the symbol for this new object on the graphical
representation, or use the arrow keys to highlight the object in the browser and press Enter with
the keyboard. The browser will now show the content of this object, instead of Root, as shown by

2Programmers with experience of standard programming languages feel usually unease about the impossibility to
define elements and determine a the sequence of operation in their code. LSD major power is actually its capacity to
generate automatically the implicit information missing from explicit declarations, as the exercises in this paragraph
will show.

3The very first time a LSD distribution is used, this procedure (the compilation) can take a minute or so, since
any part of the LSD model program must be compiled. Any subsequent generation of a model will instead be very
fast, since the compiler will re-use the compiled code of the system, limiting to compile only the equations for the
model.

4Users may exploit the keyboard shortcut Ctrl+l. All the frequently used commands are associated to a shortcuts
withg keyboard keys. With practice, using the keyboard instead of the mouse and menus is far more efficient.

5The graphical representation does never contain the compulsory object Root.

28

3.2 Analysing the results asda 29

the label of the object in the browser, which reports also the name (Root) of the object containing
it. The object Obj1 contains four entries in the list of its “variables”: two actual variables (X

(Var. lag=1) and RandomEvent (Var. lag=0)) and two parameters minX (Param) and maxX (Param).
These lines report the labels of the elements in the object and their nature. The first variable
is defined as retaining data computed during a run for one time step (lag=1), because they are
necessary to make computations in the following time step. As for the code of the equations, the
order in which the elements are stored in the object has no effect on the results produced, which
depends only on the “logic” of the model. For example, you may notice that variable X appears in
the list before variable RandomEvent, although the value of the latter must be computed before
the execution of the equation for the former. LSD model programs systematically arrange the order
of the variables so that the computations will take place in the appropriate order6.

Besides the objects and the other elements (variables and parameters), the configuration con-
tains also the information required to start a simulation, like the initial values, number of steps,
etc. Therefore, once a configuration is loaded into a LSD model program we are ready to start a
simulation run. Choose menu entry Run/Run, and a summary window will appear. The window
warns that any simulation run overwrites the existing configuration file. Since we did not change
anything in the configuration, this will simply re-create the same configuration file we just loaded.
Press Ok and the simulation will start, lasting some fractions of a second. During this simulation
run the only information provided is the sequence of time steps completed. As we will see, it is pos-
sible to change the information provided at run time either setting the options in the configuration
or using the log window to pass commands to the system.

3.2 Analysing the results

At the end of a simulation run the LSD model program has exactly the same appearance as before
running the simulation exercise. However, there are two (hidden) differences. Firstly, the states of
the elements in the model (i.e. their value) are those concerning the final time step of the simulation,
while before running the simulation they referred to a conventional time t = 0, preceding the start
of a simulation run. The states of the model contained in the browser (e.g. the initial or final one)
may be observed, and even used as initial states for a new simulation run, though we ignore this
possibility now.

The second hidden difference of the LSD model program is that it has retained some of the
data generated during a simulation run. Which series must be saved from a simulation, and which
must instead be discarded at run time is another option that users can set, and is stored in the
configuration. This is due to the fact that many large models can easily be computed in reasonable
times, but the data generated are so many that there is no memory is large enough to store all the
series, and therefore users must select which series to use7.

To access the data saved during the simulation run we need to use the module Analysis of
Results. Access this module using menu Data/Analysis of Results. The browser will be replaced
by a new window containing three list boxes8: the data available from the latest simulation run
(Series Available); the list containing the series one wants to process (Series Selected); the list of the
graphs generated in the session of analysis (Graphs). In the present case, the module contains only
one series, for variable X, indicated with a line containing: its label, a progressive value (1) and
indicating the time steps available for the series (from time 0 to time 1000). Notice that the data
for the other variable RandomEvent, as well as for the parameters are not available, indicating
that the configuration specified that only the data produced by X had to be retained9.

6Modelling the order of execution of the different routines in a simulation program is a difficult task, and it is
particularly difficult to modify such order in large models. One of the main advantages of LSD is that this order is
automatically generated at any moment, with the system controlling for inconsistencies or issuing information as
required. Still, modeller can, if relevant, fix a specific ordering for the equations.

7The system produces a warning when the operative system is not able to supply the memory required to store
the data selected.

8In case the module is launched before running a simulation, then it will be empty, and a warning will appear
listing the possible causes and the possibilities for the module to load data other than from just executed simulation
runs.

9LSD treats the data produced by variables identically as those contained by parameters, so that even the latter
can, if relevant, be used in the analysis of results, although it generally makes little sense. In some cases, however,

29

asda 30 Example 1 - Random Walk

The use of the analysis module is rather straightforward. Highlight the series available, and
press the button > (or double-click on the series). The series’ label is now copied in the central
list, and the data it refers to can be used for various analyses. There are many options to generate
many different types of graphs. Leaving the default options, the module generates Time series

graphs (using the data stored across time steps for the selected series) and Sequence analysis, using
the data in ordered series. The two options together generate therefore a graph using the temporal
sequence of the data contained in the series selected. Leave the options as they are, press button
Plot on the bottom-left corner of the window.

A new window will appear, containing the graph of the (only) series selected (and a new entry
will appear in the list of graphs in the main module’s window). The graph window shows the time
on the horizontal axis and represents with a line the values of the series selected. The pattern of the
line is a typical graph for a random walk variable. The graph windows have several features useful
to manage their content and favor the analysis of simulation results. For example, the window
my be double-clicked to push it in the background. Clicking on the graph’s entry in the Graph

list brings it again in the foreground. Moving the mouse over the graph window will show the
coordinates of the mouse pointer in the bottom part of the window.

3.3 Managing random events

The model we generated uses random events, and a typical issue concerning simulations involving
random events consists in testing for the robustness of the results. That is, we want to know
whether a give result is due only to a particular combination of random values, or, instead, it is
always generated independently from the random values used. Exit from the analysis of results
module (menu Exit, or press the key Esc and confirm), and you will have again the browser. As
mentioned before, the state of the model contained the browser is not the state as contained in
the configuration file we loaded before, but the state of the model at the end of the simulation
run. Attempting to run a simulation now, with the browser containing the final state of a previous
simulation run, will cause an error, preventing the actual start of the simulation. Try to use the
command Run/Run and the error message will explain the type of error.

The problem is that just before starting to compute the simulation steps the LSD model program
writes a configuration file containing the state of the model. This is necessary because users must
be able to replicate any simulation result produced. Running a simulation with a configuration
representing the final state of a model is obviously different from re-running the same simulation
with the configuration stored in the file. If the user really wants to continue a previous simulation
run, then it is necessary to explicitly save the final state as a new configuration, which can then be
loaded and used for a simulation run. Instead, willing to replicate a previously computed simulation
it is necessary to re-load the same (original) configuration. You can do this using the command in
menu File/Reload. After this command (as after loading any configuration), it is possible to run a
new simulation using exactly the same configuration used previously. Ensure that you have loaded
in the browser the fresh configuration, using either the reload command or the load command, and
indicating again the Sim1.lsd configuration file.

Run again the same simulation, and after that re-open the module analysis of results (Data/Analysis

of Results) to generate again the time sequential graph of the X variable, following the same steps
we used before. The graph will be identical to the one previously obtained. This means that
the random events used, though having all the properties of a random variable, are not actually
stochastic. In fact, programming languages (and obviously also LSD) uses a so called pseudo-
random generator. These are deterministic routines that return different values any time they
are used, and these values have a distribution with the probabilistic properties of a real random
function. It is possible to reset the pseudo-random generator to force it to repeat the same series
of (pseudo-)random values, as we implicitly did re-launching the same configuration. Obviously, it
is possible to set the generator so that to create new (pseudo-)random series. Each series of values
produced by the random number generator is associated to a value, called seed, that is part of the
configuration and can be set by the user as part of the simulation setting in menu Run/Sim.Settings.

models may be implemented in such way to modify the values of parameters, turning them, in effect, into variables.

30

3.4 Multiple objects asda 31

Our goal of testing for robustness cannot therefore be fulfilled, since we used exactly the same
random values. LSD offers at least two options for this objective, as will be discussed in the following
paragraph.

3.4 Multiple objects

One of the most useful features of simulations is that you define once a model, and then you can
replicate its results many times, in effect generating many “virtual histories” to be studied, for
example, to appreciate general properties of the modelled system10.

LSD allows users to execute many runs sequentially, generating results for each of them using
different seeds. The results from each run will be saved in files, that can then be loaded into the
analysis of results module for comparison. However, this simulative technique is almost always not
efficient. Running sequentially many simulations for small models, requiring little memory and
computational time, means to occupy most of the CPU time to load a configuration and saving
results on file. Furthermore, you will flush your disk with as many files as simulation runs you need,
a number that can easily reach the thousands. Much more efficient is to run many simulations in
parallel if, as in our case, the memory requirements are negligible.

Load the configuration file Sim2.lsd. This configuration is identical to that used before, but for
the fact that it contains 10 copies of object Obj1, each containing a copy of the elements defined
within this object. Run the simulation and open the analysis of results module. Now you will find
10 different series, each of them representing a random walk series. You can double-click on each
series and produce a graph for a single series, or select a group or all them and generate a single
graph with multiple series.

All the series are independent from one another, though using the same initial values. In effect,
this configuration represents a model that may be expressed, using the conventional indexing
system, as:

Xi
t = Xi

t−1 + U(mini,maxi)

where i = {1, 2, ..., 10}. The LSD representation of models does not make use of indexes, but of
objects, though the meaning of the two formats is obviously identical. When we use the traditional
vector-based representation, indicating with the same index i two elements means that they are
somehow connected, and should be used together. In LSD instead we define objects: elements
contained in the same copy of a given type of object have the same relation as if they were sharing
the same index in a vectorial expression.

It is worth to note that the language for writing the LSD equations does not make use of indexes,
but uses only the labels of elements, without specifying which copies should be used. This format
has the potential ambiguity that the code does not specify where the elements required to compute
an equation should be taken from. For example, when the equation computes the value for variable
RandomEvent contained in the first object (say, with i = 1), the code does not indicate where
is located the parameter minX necessary for its computation. The system contains 10 different
copies for this parameter, and therefore, each of these copies may be, in theory, used. This potential
ambiguity is solved by LSD using the structure of the model, that is, the relations among objects
and the elements contained there. The first rule applied by LSD is that an equation requires an
element, firstly search for the element within the same object. Consequently, every RandomEvent
in the model will be computed using the copy of minX in the same object.

3.5 LSD automatic data retrieving

One of the most powerful features of LSD is that the system automatically interprets the code and
the state of the model in order to determine which operation needs to be done at any moment of
the simulation run. For example, we already noted that the order of execution of the equations is

10Or, as suggested in the methodological part, in order to individuate the conditions that give rise to rare, but
relevant, events.

31

asda 32 Example 1 - Random Walk

automatically generated by the system, so that there is no need to place in particular order the
code for the equations of the variables’ declaration. We see now another advantage of the LSD way
to express models.

Load the configuration Sim3.lsd. Though the equations are obviously identical (they are coded
into the LSD model program and cannot be modified by the program itself), this configuration
differs from the previous ones, including an additional object, Obj2, contained in Obj1. Looking
at the content of the objects you can see that the same elements we had before in one single
objects are now divided between the two objects: minX and maxX remain in Obj1, while the
two variables have moved to Obj2. As indicated by the graphical representation, there are 10
copies of Obj2 contained in a single copy of Obj1. Therefore, there is only one copy each for
minX and maxX, and 10 copies for the two variables.

Changing the model structure, we, in effect, computed a slightly different model, which may
be expressed, using the conventional vector-based expression, as:

Xi
t = Xi

t−1 + U(min,max)

where i = {1, 2, ..., 10} refers to the different copies of Obj2, and the two parameters are
common for all the X ’s in the model. The two parameters have no need to be assigned any index
since there is only single copy for each of them.

Run the simulation for this configuration: it will produce results identical to those produced
with Sim2.lsd. Since all the copies of minX and maxX in configuration Sim2.lsd where identical,
it is not surprising that the results are the same. What is surprising, from the computational
perspective, is that the model equations can indifferently compute both models. The reason is the
second rule used by LSD to retrieve values while computing the equations: if an element is required
but it is not found in the object of the computing variable (in our example, minX is not found in
Obj2 where X is stored), then scan all the model structure to find it.

Using an object-based expression rather than a vector-based one provides huge advantages.
For example, we can limit the number of parameters, sharing the same copy of an element though
it is used for many different equations. Once a modeller gets used to this expression, it is much
easier to build a model as an imitation of a real-world system, particularly when implementing
agent-based models. As we will see, the equations’ language requires the modeller to express only
the computational content, referring to the elements of the model only by their label, and not using
indexes or other ways to identify the location of the elements. It is the hierarchical structure of
the model that guides the search for a specific element.

To better appreciate how LSD exploits the model structure to identify the elements to use for
a simulation, load the configuration Sim4.lsd. As you can see, the model structure is identical
as in Sim3.lsd, but for the fact that we have now two copies of Obj1. The structure of the two
copies are identical, that is, they contain the same parameters, variables and descending objects.
In LSD elements with the same labels are constrained to have the same structure. However, they
can contain different numerical initialization. In this example, both groups of objects Obj2 are
composed by 10 copies, but the values of the parameters in Obj1 are different (-10 and 10, for the
first copy, and -1 and 1 for the second).

Now the model computed is yet another version:

Xi,j
t = Xi,jit−1 + U(minj ,maxj)

where the index j = {1, 2} refers to the copy of Obj1.
Run the simulation and observe the results. The 20 copies of variable X are now identified by

two digits, the first for the copy of Obj1 and the second for the copy of Obj2. As you will see,
plotting the two groups of variables, the groups of series span over different ranges, reflecting the
different values of the parameters used.

3.6 Functions vs variables

LSD provides users with two elements that can generate computations: variables and functions.
Variables, as those used in the model configuration so far, are elements that execute their equation

32

3.7 Analysing massive amounts of data asda 33

always once and only once at each time step, assuming the resulting value as their state for the
concerned time. The system ensures that each variable is updated at each time step and that the
appropriate values in their code are used. For example, if a variable’s value is used in the code
of many elements of the model within a single time step, its equation is executed only once (the
first time its new value is requested), while the any subsequent request of its value within the same
time step returns the same value without re-executing the equations’ code.

Functions are similar to variables, but their equations are executed only, and every time, their
values are requested by the code in other equations, independently from the time step. In effects,
functions do not have a value for each time step, since at any time t they may produce many different
values, or none, depending on how many times they have been requested by other elements in that
time step.

To appreciate how functions work load the configuration Sim5.lsd. This configuration is identical
to Sim4.lsd but for the element RandomEvent. In the previous configurations this element is
defined as a variable, computed once and only once, and whose values are used only by the copies
of variable X located in the same copy of Obj2. Now, instead, we find RandomEvent defined
as functions (and not variables) located in Obj1. If you ran the simulation you will obtain exactly
the same result as those produced by Sim4.lsd, though by means of a different computational
structure. Every copy of X will make use of the copy of RandomEvent contained in its parent
object. Moreover, every RandomEvent will be computed many times in the same time steps,
reporting different values to the different copies of X requesting its value.

Functions can be thought of as pieces of code generating values that have no relevance, per se,
as simulation results, but need to be computed occasionally by other elements in the model, at
times independent from the simulation steps. For example, a function may contain the code to
express the entry of a new firm in a market, if the entry is a rare event. The entry may be triggered
by many different events (e.g. an incumbent’s spin-off, innovation, etc.) but each of them would
produce the same initialization code contained in the function.

The existence of functions permits to express event driven models, as opposed to time driven
ones. An event-driven model is made of functions that trigger one another in a cascade of com-
putations. LSD offers the opportunity to integrate the two modelling styles, where, for example,
variables (i.e. time driven computations) deal with data collection and management, while the
core of the model is expressed by functions.

3.7 Analysing massive amounts of data

LSD is particularly suited to generate and analyse data from very large models. Since LSD is, in
effect, made of C++ code, a model can easily exploit all the computational power made available
by the hardware. For very large models, however, the management of large amount of data is
more problematic than their generation. This is due to the fact that modern processors can easily
generate massive amount of data that necessarily require specific tools to be stored and analysed.
LSD offers flexible and highly efficient tools to deal not only with single series, but also to manage
whole batches of data generated in simulations of very large models.

As an example, load the configuration Sim6.lsd. It is the same configuration as Sim3.lsd, but
the number of Obj2 copies are set to 10,000. Run the simulation (it will be slower than before,
lasting about 10 seconds) and you will produce as many series, each containing 1,000 data, for each
of the time step executed.

Opening the module for analysing the results your will have a huge number of series. The first
problem caused by large amounts of data is due to the simple selection of the series we want to
work on. Clicking on each series individually is obviously out of question. It is possible, though
time consuming, to use other selection mechanisms embedded in the list-box, like clicking on the
first and then last series while keeping the key Shift pressed. Still, the selection of data within a
large data set is problematic, particularly for models with several types of series saved.

The LSD module for analysing results is designed to facilitate the management of large amounts
of data. Concerning the selection of the series, for example, it is possible to pass the system several
types of criteria for selection. Click with the right button of the mouse any of the available series.
A new window will offer several systems to select a whole group, or batch, of series, depending

33

asda 34 Example 1 - Random Walk

on different criteria. The options available are rather sophisticated, though, hardly viable for our
simple model. Use the default option (Select all the series), and confirm. All the series will be
immediately moved into the central list.

Though it is technically possible to plot the time pattern for all the series, this is practically
impossible, and rather meaningless. In fact, the limitation is due to the computational costs of
generating 10 million points in the graph individually, as required by such a graph. Moreover,
when using large models we normally are not interested in observing so many series through time,
but are rather interested in the assessing global properties at a certain instant of time, for example
at the end of the simulation run. To do this, select the option Cross section instead of the default
Time series.

The graph produced with this option will consider as a single sequence all the data from different
series at the same time step, where the series appear on the horizontal axis. Such graph requires
additional information since it can be customized in several ways. For example, it is possible to
generate many series corresponding to different time steps. Also, the order in which the series
appear on the horizontal axis can be changed reflecting the values of the series at a specific time.

After clicking on the button Plot the system will show a new window, where you need to enter
the time step(s) to use. By default the window offers the latest time step available. Click on Add,
and the time step will be added to the list of time steps to use. Press then the button Continue

to generate the graph. The new graph window will report a single line referring to the time step
inserted (1,000) using values for all the 10,000 series that appear on the X axis according to their
ranking in the list-box.

The graph is actually quite meaningless. In fact, each series is represented on the horizontal
axis in a position determined by its order of appearance in the selected list box. Since these series
are independent, there is no particular order in the values shown in the graph. To make sense
of these values, we can organize the order of the series on the horizontal axis according to some
criterion. For example, ordering them for decreasing values, as reported at the chosen time step.

Press again the plot button, and insert as before the last time step. However, before pressing
on Continue, click on the button Sort Descending. The insertion window will report that the series
will be re-organized according to the descending values at the specified time step. Confirming the
options chosen, you will now have a more orderly graph. Though the random walk dynamics are
known to have infinite variance as time increases to infinite, at a given time they have a known
distribution. Our simulation can be interpreted as a sample of 10,000 independent random walks,
and therefore we can expect them to distribute according to density of the underlying probability
function. The graph shown that there is a small number of very high and very low values, and
larger number of intermediate results.

The cross section graphs report the values for the series, from which we may induce, but not
observe, the actual frequencies. LSD allows also to generate frequency classes from the data selected.
Always having all the series in the central listbox, and keeping the option Cross section selected,
click on the button Histograms. Again, being a cross section, you will be asked for the time step
to use (leave the default value). Also, the window will ask for the number of classes. Insert in
this latter cell the value of 20, and press Ok. The graph will report 20 columns with the same
width. On the horizontal axis the graph reports the range of the sequence used (the values of X ’s
at the last time step). The range is determined by the maximum and minimum values of the series
used, divided evenly in as many classes as specified. The resulting segments are used as the bases
for the histograms, whose height is proportional to the number of series taking a value falling in
the interval of the class at the specified time step. The vertical axis reports both the absolute
frequencies (i.e. the number of series in the class) and the relative percentage. Moving the pointer
of the mouse on the boxes will provide information on the class, like its intervals, middle value,
actual average value of the values contained etc.

You can generate new histograms, using different class numbers and using the other options
(see the Help if necessary). The distribution will clearly be a symmetric one, strongly resembling
a normal distribution function.

34

Part II

Tutorials

35

Chapter 4

Implementing LSD models:
Example 1

Implementing a simulation model for research purposes is a process prone to errors. We can divide
the possible errors in two classes. Firstly, we may simply write the wrong code or values, so that the
model implemented is different from the one we wanted to implement. Secondly, we may discover
that, though implementing the model we originally designed, it is not appropriate for the purposes
of our research, and therefore we need to modify the original idea.

In either case, an error needs to be firstly spotted and then fixed. Identifying an error can be
very difficult: a large model, with dozens of routines and thousands of variables produces massive
amounts of data, that are likely to be analysed only statistically, at aggregate level. Unless the
error generates evident absurdities (say, negative market shares), it is well possible that the faulty
code goes unnoticed.

Even in the case we identify an error and the required solution, say, replacing the code for
a variable, the effects on the rest of the model may be huge, producing an avalanche of further
changes on the rest of the model forcing, in practice, a complete re-writing of the whole model.

LSD provides very powerful tools to assist users in both respects. LSD models are automatically
endowed with a large series of interfaces to access the state of the model in many different ways,
facilitating the identification of problematic code. Also, the very structure of a LSD model is made
of independent chunks of code, minimising the possibility that a few changes require the re-writing
of large portions of the model. Still, even though LSD allows technically to find and fix problems
at any stage of a model development, it is far easier to adjust a model

In both cases, it is good practice (and, in many case, of capital importance for the success of a
project), to develop the model gradually, adding few element at a time, testing the (theoretically
trivial) intermediate results, and proceed adding further complications. Without this approach,
implementing at a single stroke hundreds of lines of code and dozens of values, we can be guaranteed
to generate a long list of errors, whose combined effect make practically impossible to identify their
original source. Moreover, even in case we managed to generate an error-free model, we are likely
trapped in the black-box problem, since we cannot trace the properties of the results to the specific
assumptions implemented in the model definition. In this section we will build a model step-by-
step, so to have the possibility to discuss any aspect of modelling with LSD.

In this section we implement from the scratch a new model, which eventually will represent
a discrete version of the replicator dynamics model. The process of model construction will be
described step-by-step, with the aim of familiarizing readers with the major interfaces and oper-
ations. The steps described have also the purpose to show how a typical simulation project may
proceed, by adding a few elements at a time, testing the results, editing the model, and extending
it. As initial stage we start by implementing a model with one single variable, say X, computed
as a random value.

37

asda 38 Implementing LSD models: Example 1

4.1 Create a new model project

A LSD model requires several files, and the user is generate more, e.g. for different configurations,
results, graphics, etc. To create a model it is then necessary to create firstly a directory where to
place the basic files (essentially the equation file). The various models located in an installation
can be organized in groups. The installation originally contains two groups: example models and
work in progress. Users are obviously invited to place their models in the second group. Within a
group the user can obviously create other groups, typically for sets of related models. Any group
or model create its own directory that can be inspected, but whose content is safe not to alter
unless using the LMM tools

To start the system launch we consider you already unpacked the installation file. Click on the
run.bat file to start the system.1.

The program starts offering automatically to open a LSD model, with the alternatives being to
use LMM as text editor. Opting to use models the system activate a model browser showing all
the models present in the installation, which also permits to create new ones.2

Figure 4.1: Model browser, initial screen

Using the mouse pointer or the arrow keys choose a group, e.g. “Work in Progress”, and then
uses the module’s own menu Edit and then New Model/Group. You will have the choice between
creating a new group or insert a new model. Opting for the latter you will be requested a few
details to identify the model. Firstly a model name and a version number, which will be used
solely to label the model for users. The third field, the directory name, needs to be a non-existing
directory and cannot contain spaces, punctuations, etc.

Confirming on Ok will create a new directory (or a warning in case of error) with all the
necessary elements required for an “empty” LSD model program. The most relevant is the file
that LMM will use assuming it contains the code for the equations of the model. The filename is
conventionally labelled as fun XXX.cpp, where XXX is the model directory name. Users may change
the file name, but this is potentially dangerous since LMM considers only changes to the equation
file to be included in the model.

1For non-Windows users is also necessary to compile the lmm file. See the instructions on the installation in this
document on in the accompanying files. For these system the system is launched directly the lmm executable

2The browser can be activated, besides at the start time, by choosing the LMM command Model / Browse
Models.

38

4.2 Introduction to LSD equations asda 39

At the end of this procedure the the LMM editor window shows the equation file for the new
model. Although this is pure C++ users are invited to use keywords specifically designed to make
simpler the expression of the most frequently used LSD expressions.

After the successful creation of the new model, LMM shows in the top bar the reference of the
model (label and file name). Moreover, it automatically opens the equation file name, assuming
that the user needs to start from there. The equation file name appears in the LMM editor as
shown in figure 4.2.

Figure 4.2: Empty equation file for a new model

The equation file contains at the very first line a call to include the definition of all the LSD

specific command (file fun head.h). The two following keywords, MODELBEGIN and MODELEND, are the
markers stating the initial and final lines within which the user is allowed to insert the code for
the equations. The last command, close sim(), can be ignored for now.3

At creation the file contains no equation, but it is anyway technically sufficient to create and
run an LSD model program, although, obviously, without equations the LSD model program will
not be able to execute a simulation run.

4.2 Introduction to LSD equations

Users define in the equations of the model all the operations that need to be executed by the model.
Equations are pieces of code are associated to a label; during a simulation run, whenever the system
needs to compute the value for a variable, it passes the control of the program to the equation
file. Here the system searches for the piece of code associated to the variable to be computed, and
executes its lines, returning to the simulation (i.e. searching for the next variable to compute) at
the end of the line of the equations for that variable. Therefore, each equation must necessarily
indicate at the very least two basic elements: the name of the variable it refers to, and the final
value to be used as result of the equation execution. In between is possible, of course, to place any

3Technical Note: In the rest of the text notes like this one will report on technical aspects, of possible interest
for advanced users, but not relevant for the standard use of LSD.
Many of the commands used in LSD equations are obviously not C++, but are part of a LSD macro language. LSD

macro language and C++ can coexist in the same equation file. For example, the MODELBEGIN macro declares a
function (a method of a C++ class) and initialize all its local variables. If necessary, users may add new local and/or
global variables to the file. close sim() allows to perform post-simulation cleaning, like removing memory explicitly
allocated during the simulation by the code written by the modeller. Obviously, all memory used by the system is
automatically dealt with by the system.

39

asda 40 Implementing LSD models: Example 1

number of intermediate lines containing legal C++/LSD commands, typically used to elaborate the
value to be returned.

If LMM is not showing the equation file, use the menu Model/Show Equations to have LMM
re-opening the equations’ file. It is very important that you never open file for the equations using
the menu File/Open File. In fact, although this is not formally incorrect, there is the possibility
that you edit the wrong file. In this case, the equations’ editing is not included in the LSD model
program, which keeps on using the old, un-edited, equations’ file, and therefore the LSD model
program will not include them. When LMM is requested to show the equations’ file it reads the
name of the file used to create the LSD model program, and therefore there is no risk of editing the
wrong file.4

Place the cursor of the LMM editor in any point of the file after the line MODELBEGIN and before
MODELEND. It is now time to discover some of the utilities that make LMM very useful to write LSD

model programs. The equation file is a simple text file, so that any text can be simply typed in.
However, typographical mistakes are very common and their correction time consuming. Hence,
LMM offers the opportunity to activate small interfaces that ask for the model-specific information,
and then automatically insert the (error-free) text for the most commonly used commands. These
interfaces are called scripts and are available for several commands, including all the variations for
specific options.

Figure 4.3: List of the scripts available to automatically insert LSD commands into the equation
file.

To use a script place the cursor where you want to insert the text (in our case, anywhere in
between the keywords for the start and the end of the equations, adding lines as necessary. You
can then choose three different ways: menu Edit / Insert Lsd Script; click with the secondary (right)
button of the mouse; press with two fingers the keys Ctrl+i. In any case you will be shown a list
of the available scripts available, as in figure 4.3.

In our case, we need to insert a the code for a new variable, thus select the first option in the list
(or press the key e) and press the key Return, or click on Insert. Notice that almost every operation
necessary to write the equations can be performed without the use of the mouse, but only using the
keyboard. Getting experienced in using the keys and the available shortcuts increases dramatically
the speed of typing the equations in respect of using the mouse.

Following the choice of inserting a new equation you will be asked to type the name of the
variable (choose X). Notice that focus is already in the cell for the variable name, so you just need
to type the variable name. Pressing Return the focus is shifted to the button Ok, so another hit on
the same key will conclude the script operation.

The script provides with a skeletal (and yet incomplete) code for the variable X.

4Users can modify the name of the equation file changing the content of the compilation model options, using

the relative option in menu Model.

40

4.3 Defining LSD model elements asda 41

EQUATION("X")

/* Comment */

RESULT()

The line EQUATION("X") marks the beginning of the equation, that is, the start of the code that
any variable labelled X in the model will begin to execute whenever it needs to compute a value.

The editor places the curse so as to invite you to type in the lines immediately below the
header. Any test inserted in between the symbols /* and */ is considered as comment in C++
(and highlighted in green in LMM) and therefore ignored by the program. This specific comment
is particular relevant, because it is considered as the “official” documentation for the variable, and
the system will automatically use this comment here any time the documentation of the variable
is requested.

The last line, RESULT(), indicates the end of the equation and must be assigned, within the
round parentheses, the numerical value returned by the equation and assigned to the variable.

Let’s write the possibly simplest equation. In between the parenthesis of the RESULT() type the
command RND. This is a LSD command producing a different random value drawn from a uniform
random function between [0,1]. Therefore, the complete equation’s code is:

EQUATION("X")

/*

A uniform random value

*/

RESULT(RND)

When an equation file is edited it must explicitly be saved, since the compiler does not read the
editor window, but only the content of the file. Therefore, save the equation file (menu File/Save

or shortcut Ctrl+s) and, to compile, use menu entry Model / Compile and Run (shortcut Ctrl+r).
This will create (and execute) the new LSD model program containing the new equation.

If you try to compile without saving, the system asks whether you want to continue without
saving, or if your want to save the current file before compiling.

At this point LMM should show the new program just compiled (figure 4.4), which is automat-
ically launched. If the LSD model program windows do not appear, and you have an error message
instead, this means that you managed to put an error in your equation’s code. Read the newly
appeared Compilation Results window for indications on the line number where the error is located.
See also the appendix 11.2 (pg. 198) for help on fixing the error.

4.3 Defining LSD model elements

All LSD model programs are externally identical, because their difference consists only in the equa-
tions they embody that have any visible effect on their interfaces. The LSD model program we just
produced is able to compute a value for a variable labelled X. However, this potentiality can be
exploited only defining a model where an actual variable X is defined5.

The LSD Browser provides the interfaces for creating the elements of the model, but, before
continuing, let’s give a look at the browser.

The LSD model program browser (figure 4.4) is a window showing the content of one type of
object in the model and providing access to all functions of a LSD simulation model, apart those
concerning the computational content (i.e. the equations). The main part of the windows is
composed of two lists, empty at the start. The one on the left shows the list of numerical elements
(variables, parameters and functions) of the object pointed to by the browser. The right-hand list
contains the labels of the objects contained in the object shown, again empty at the start. The
only object necessarily present in any LSD model is a slightly special one, called Root. This object
is the only one that cannot be multiplied in multiple copies, like any other one. Moreover, it is

5Of course, it is possible to write code for variables that are not used in a simulation. These pieces of code will
not have any effect on the simulation runs, since they will never be activated.

41

asda 42 Implementing LSD models: Example 1

Figure 4.4: LSD model browser, the program embedding the equations of a specific model.

always the first object at the beginning of a time step to be scanned in search of variables needing
updating. Hence, any variable placed here will surely be the first to be computed.

Just above the lists of elements are located the name of the object shown (Object: Root) and,
one position above, the name of the object whose currently shown object descends from (none, as
the Root is conventionally assumed to be the only object not contained in any other object).

Finally, the menu bar contains the sets of commands for the operations available: file manage-
ment, model structure, setting or observing data, executing simulation runs, help.

Normally, the Root object should not contain any variable or parameter, but should serve only
as container for the objects implementing the model. Therefore, let’s start by creating an object
descending from Root. Choose menu Model/Add a Descending Obj. In the resulting window enter
the label for the object, say MyObj. Now the LSD Browser will show the Root object containing
the MyObj object. Moreover, a new graphical window appears showing the object structure of
the model below (i.e. contained into) the object Root. Therefore, at the moment, it shows only
one object, the just created MyObj.

When naming elements of LSD models users can use any printable character, and the capital-
ization is relevant, so that MyObj is different from myobj. It is forbidden to use points, spaces,
quotations and other word-separating characters.

Move the Browser to show the content of MyObj. To move the browser you have several
possibilities. You can use the mouse by double-clicking the list of descendants on the label of the
object you want to move to; you can double-click the graphical representation of the model on the
object’s symbol; you can just use the arrow keys on the LSD browser to highlight the object you
want to see and press enter when you have done. Notice that when the Browser shows MyObj
the parent label shows that it descends from Root. You can click on this label to “move up” the
browser showing the Root again (or press the letter ’u’).

Eventually, we managed to have the Browser showing the content of a just created object, which
is, obviously, empty6. Let’s add a variable to this object. Choose menu item Model/Add a Variable.
In the resulting window type the name of the variable for which we have an equation, X, and press
Ok (ignore the field ’Maximum lags used’ leaving the default value of 0). Now the Browser shows

6Be sure that the browser points to the right object. If, by mistake, you add elements to the wrong objects it is
possible to shift en element to a different object. If this is the case now, however, you better start the process from
the scratch. Empty the model (menu File) and create again the object.

42

4.4 Running LSD simulations asda 43

that MyObj contains a variable, called X. The list of variables shows X (0); this means that X is
a variable (as any label followed by integer numbers). Later will see that parameters are attached
the letter (P) and functions by letters (F).

The definition of a model structure (that is variable, parameters and object) is stored in memory
only. Before continuing, in order to be able to reload the model structure as we have defined it
until now, save it with menu File/Save. By default the configuration is assigned the name of Sim1,
although, of course, we can assign a different file name using menu File/Save as.

4.4 Running LSD simulations

If you have executed all the steps described above, you can now run a simulation by choosing
menu Run/Run. Before starting, LSD reminds you what it is going to do, namely running a single
simulation run keeping the results in memory, and over-writing possible configuration files having
the same name7. Pressing Ok will start the simulation.

The Log window shows a message on a new line for each time step successfully completed (you
will see this only when the simulation finishes after few hundredths of seconds). At the end of the
simulation the Log window reports the total time of the simulation and a finishing message, and
the Browser reappears. Besides the lines in the Log window, there is no other difference with the
Browser before the simulation run.

In fact, LSD has done everything we have said it to do: compute the values of X as a random
value. But we did not tell LSD to save or show the results in any way, so we have lost (almost) all
of them. Actually, one single value from the simulation is still available. When LSD terminates a
simulation run the Browser keeps the status of the simulation at the very last time step. The only
way to obtain our results is therefore to repeat the simulation, this time using the options to save
the results.

The default option when defining a new variable is that its values need not to be stored for
post-simulation analysis. Every value produced by a variable will therefore be stored in memory
for the time strictly necessary to complete a time step, and then it is cancelled. This ensure that
large models can be simulated without limitations due to memory constraints. Obviously, some of
the data produced in a simulation can be saved, but the modeller needs to explicitly signal which
element are relevant to be saved. Thus, we need to repeat the simulation after having set the
option to store all values produced through time from variable X.

The repeat a simulation run we need to reset the configuration stored in memory from the
status at the end of the simulation run to that used at the beginning. This is necessary because
LSD prevents the direct continuation of a simulation, re-starting a run after it was completed. But
since it saves any configuration before a simulation run, we can easily re-load that initial state of the
model without the need to re-define the model from the scratch. To do so you may use the option
File / Load and choose the only file with the extension .lsd. Since the name of the configuration
we want to load is the same as the one previously loaded, you can also use the command File /

Reload (shortcut Ctrl+w).
Notice that you really want to continue a simulation after it ended, you can save the configu-

ration at the end of a simulation run and load it as any other configuration.
With a fresh configuration we can not tell the system that we want the results saved for post-

simulation analysis. Move the Browser to show the object MyObj and double-click on the variable
X (or use the arrow keys to highlight and press Enter). Now the Browser is transformed as shown
in fig. 4.5.

This window provide access to a set of options concerning a variable. For the time being we
focus on the three checkboxes after the header with the name of the variable: Debug, Save8 and
Run Time Plot. Check on all the three of them and click on Continue to return to the Browser.

The options we have set we tell LSD that the values of LSD must be saved for post-simulation
analysis (Save) and that, during a simulation, we want to see the dynamics of X in a run time

7As a rule the configuration of a model is saved in a file before executing the simulation. This avoids that possibly
interesting results cannot be reproduced because one forgets the configuration that produced them. However, this
rule risks overwriting previous files, hence the warning message.

8There are two Save options. The second, saving data in separate files, is rarely used and is ignored in the tutorial
for brevity.

43

asda 44 Implementing LSD models: Example 1

Figure 4.5: LSD variable options

plotting window (Run Time Plot)9. Notice that the two options are independent, so that we may
save the results of a variable without plotting its values at run time, or, viceversa, observing its
values without saving them for post-simulation analysis.

4.5 Results of LSD simulation runs

Now we can run again a simulation run (menu Run/Run). This time, the Log window does not
show the steps completed, because a new window provides the graph reporting the values of X
through the time steps. Being a very short simulation it is likely that before being able to see it
the window containing the graph will be covered by the LSD browser. If necessary, use the icons to
highlight the window, or minimize the LSD browser.

The Run Time plot window is meant to provide a quick approximation of the simulation results.
A more precise presentation of the data produced during a simulation run is produced with the
Analysis of Results module, which is devoted to produce a detailed analysis of all the data saved
from a simulation run. To access the module from the Browser, choose menu Data/Analysis of

Results, and the window shown in figure 4.6 will appear.

Figure 4.6: Analysis of Results window

This window allows several ways to present and elaborate results.

9The Debug option allows to control the internal computation of X during a simulation run. We will see that
later.

44

4.6 Extending a LSD model equations asda 45

The main body of the window is composed by three lists: Series Available, Series Selected and
Graphs. Selecting the series in the first list you move them in the second list pressing > (or double-
clicking on the series). The checkboxes in the lower right part determines how the data must be
treated. The default setting are Time Series and Sequence asking for the temporal sequence of the
data selected.

The series available (in our case only one) are indicated by their label and other indicators,
that we ignore for the moment. Move the only series in the leftmost list (X) to the the middle list
double-clicking on it. Leave the default options as indicated. Now press the button Plot; this will
create an equivalent of the Run Time Plot window, in that the graph shows the time steps on the
horizontal axis and the value of X on the vertical one. This time the graph provides several more
information on the data. For example, hovering the mouse pointer over the window will give the
coordinates of the area under the pointer; when the pointer crosses the line of the graphs the label
of the variable appear in the left-bottom corner; double-clicking any part of the graph the main
control window comes to the foreground.

Besides plotting graphs the Analysis of Results module provides also some descriptive statistics.
If the Analysis of Result window is hidden below the graph window, double-click anywhere on the
graph. This will bring the Analysis of Result window in the foreground (this comes handy after
you have produced many graphs). Press the button Statistics and observe the Log window (search
for its icon in the icon bar of the screen). You can see some descriptive statistics concerning the
series selected.

The Analysis of Result module in LSD provides the most commonly used information concerning
the results of the data produced in a simulation. Moreover, it can save the data in files ready to
be imported in other packages for more sophisticated analysis. The possibilities offered by the
Analysis of Results module are fully described in its help page (Help/Help on Analysis of Results).
However, many options have no sense for the moment, since they involve the use of several series
and we have only one, so we’d better exit from this module and explore other aspects of LSD.
Choose menu Exit/Exit to quit the Analysis of Result and return to the Browser. We are going
now to update the equation file, inserting a slightly more interesting equation. Therefore, quit the
LSD model program, and return to LMM to update the equations for a new LSD model program.

4.6 Extending a LSD model equations

The equation we have written is pretty basic. We have defined X as a variable returning random
values in the range [0,1]10. Let’s review the equation adding two parameters so that the user can
decide the lower and upper limit of the random function. The mathematical formula for a variable
X1 to extend the random variation from [0,1] to arbitrary extremes:

X1 = minimum+ (maximum−minimum) ∗X (4.1)

Equation 4.1 shows that when X = 0, than X1 = minimum; if X = 1, than X1 = minimum +
maximum−minimum = maximum; for intermediate values X1 varies proportionally to X.

Let’s implement an equation for X1. If you did not do that yet, close the LSD model program
(File/Quit) since we need to write a new equation in LMM. If LMM, for some reason, is not showing
the equation file, choose menu Model/Show Equation.

In the equation file place the cursor below the line MODELBEGIN, above the line MODELEND and
not inside the code of the equation for X. You are free to decide the order in which the equations’
code appear in the equation file. LSD determines, during a simulation, the order of execution of
the different variables, so the order in which their code appear in the equation file is irrelevant.

As done before, choose Edit/Insert LSD Script and choose Equation. Type the label X1 for the
new variable and press Ok.

In order to compute the values of variables an equation needs almost always to use the values
of other elements in the model, either variables or parameters11, and then make logical or mathe-

10If you don’t know how random numbers are treated by computers, and have never heard the concept of “pseudo-
random number” or “seed”, you may want to read the section on this topic in the paragraph 10.8.8 (page 182)
describing the random functions available in LSD.

11From now on we will consider functions as equivalent to variables, unless otherwise specified.

45

asda 46 Implementing LSD models: Example 1

matical elaborations on them. To retrieve the value of an element and use it within an equation we
need to use a LSD function called V("label"), standing for V-alue of the element with label “label”.

Using the V("...") function, the equation for X1 may be written as:

EQUATION("X1")

/*

A random value within ’minimum’ and ’maximum’

*/

RESULT(V("minimum") + (V("maximum") - V("minimum"))* V("X"))

Although the equation above is legal and working, writing the elaboration in the RESULT(...)

line is hardly a practical strategy for even minimally elaborated equations. For longer computations
a single line will not be sufficient, and anyway the code will be un-readable. It is therefore a good
practice to structure the code for the equation with a programming style that minimizes the
computations required and improves the clarity of the code.

A more efficient style of coding (which becomes a necessity as soon as the equation is even
slightly complicated), consists in collecting initially all the values necessary for the computation
and storing them into local C++ variables, which are then used to perform the actual computations,
possibly with many intermediate computations.

Temporary variables are repositories that live only within the computation of one single equa-
tion, and are re-created any time a variable starts to execute its equation12. In the equation
file modelers have available the vector of temporary variables named v[0],v[1],v[2],v[3],....
Therefore, the equations for X1 according to the normal LSD equations’ programming style is:

EQUATION("X1")

/*

A random value within ’minimum’ and ’maximum’

*/

v[0]=V("minimum");

v[1]=V("maximum");

v[2]=V("X");

v[3]=v[0]+(v[1]-v[0])* v[2];

RESULT(v[3])

In the first three lines of the equation we assign the values minimum, maximum and X to
v[0], v[1], and v[2], respectively. Then we assign the result of the operation to a fourth local
variable, v[3] and, eventually, its value is used in the result line.

Figure 4.7: LMM script to insert the equation function V(...).

To insert the v[0]=V("minimum"); line and the others we have available a LSD script, which avoid
trivial, but time-consuming, mistakes and keep tracks of the different local variables used. Trying
placing the cursor in the desired location of the editor and choose menu item Edit/Insert LSD Script

and then choose the option V(”...”). In the resulting window choose the desired index for the

12This point should be clear. The temporary variables we are going to use cannot be used to transfer values from
one equation to another. They are strictly local storage places that needs to be loaded and can be used only within
one equation.

46

4.7 Initializing LSD elements asda 47

v[...] and the type label for the value to request, that is minimum. Leave the other two options
to the default values. Notice that the script moves the focus sequentially through the different
fields; you can quickly move the from one field to the next by pressing the Enter key without ever
using the mouse.

Repeat the script for all the three elements, inserting a new line after each line is inserted.
Notice that there is no difference in the equation code between using values from parameters or
variables. Actually, a good modeling style consists in implementing earlier versions of the model
with all parameters and only one or few equations. Then, gradually, adding one equation for
a former parameter transformed in an equation. The earlier equations will continue to work as
before, with no change required, even if the internal cycle of computations necessary to update all
variables will be different, but this a task performed automatically by the system.

After having concluded the coding save the file with File/Save (or using the shortcut pressing
at the same time the keys Ctrl+s).

It is possible that you have typed an error in the code above, for example forgetting a semicolon
at the end of a line, or forgetting one of the nested parentheses. If you try to run the LSD model
program with such an error the system will issue a warning. A new window will contain the message
indicating approximately where the error has been found, so that you can fix it (see the section
11.2 on compilation errors.).

When a new LSD model program appears after the compilation we are ready to update the
model configuration adding the new variable and the two parameters.

4.7 Initializing LSD elements

The new LSD model program is able to compute a new variable, X1, but, for this having any effect
in a simulation run, we need to add this variable, and the necessary parameters, in the model
configuration.

First of all we need to retrieve the model configuration we have defined before: use File/Load

and choose the LSD file (called sim1.lsd unless you did not change the default name). We need to
add three elements to the model: parameters minimum and maximums, and variable X1.

Move the Browser to show the MyObj object and then add the two parameters using Model/Add

a Parameter and the variable with Menu/Add a Variable (note that the parameters’ labels in the
Variable list have appended the symbol (P)).

Beware that the spelling of variables and parameters in the LSD model program must perfectly
match their spelling in the equation file, and that lower/upper capital letters matters. If a variable
or parameter with the wrong spelling is inserted it is possible to edit its label. To do this double-
click on the label of the element to edit so to open the option window for that element (see fig. 4.5
at page 44). In this window you can double-click on the red label of the element in the upper part
of the window and a new window will appear, as shown in figure 4.8. This window allows to change
the label for the element (assign an empty label to remove it altogether), change its position in the
object structure, or change its nature (e.g. from parameter to variable).

Figure 4.8: Options to modify an element. It is possible to turn the element into a parameter,
variable or function; change the label of the variable; delete it altogether (assigning as new label
an empty string); move it to a new object.

After having inserted the new elements we are still not able to run a simulation. In fact, the

47

asda 48 Implementing LSD models: Example 1

two newly inserted parameters need to be initialized, and an attempt to run a simulation would
cause an error message to be issued and the simulation run aborted (try it, and then re-load the
configuration to return to the current configuration).

To assign a value to the parameters in an object13 you need to place the Browser to show
the object concerned and then choose menu item Data/Init. Values. The Browser window is then
transformed in a table showing one line for each element to initialize, as shown in fig. 4.9.

Figure 4.9: Initial values for MyObj

By default LSD assigns a value of 0 to each element. You can type into the cells the elements
desired, say -100 for minimum and 100 for maximum. Notice that the initial value window does not
show the elements that do not need to be initialised, like X and X1. At the end of the initialization
press Ok to return to the Browser.

Now we could run a simulation, although we may want to save the results of X1. Double-click
on this variable in the Browser and set on the option Save and the option Debug. Now we can run
the simulation. The Run Time Plot window will report only the series of X, as before, because we
did not set the option Run Time Plot for variable X1. However, the values of X1 have been saved
and we can observe them in the Analysis of Results window (menu Data/Analysis of Results). This
time we have two lines in the list of the series available, one for X and one for X1. Observing
their graph we see that they have the same dynamics, but, as expected, their range differ for the
scale.

As a matter of exercise, we can produce a scatter-plot graph, where two values of the two
variable at the same time step correspond to a point. In the Analysis of Results window check
the box Time Series and the box for XY plot. Choose also the option Point to generate a graph
with dots and without a line interporlating the points. Insert in the Series Selected list firstly the
variable X and then X1. After clicking on the button Plot a new window asks whether you want
to generate a high-quality or low-quality graph; press No and a new graph will appear14 This graph
shows the values of X on the horizontal axis and the corresponding value (i.e. at the same time
step) of X1 on the vertical one.

After having produced the graph, exit from the analysis of results module and return to the
Browser. Since the LSD model program contains the data from the latest time step, reload the
configuration. You can use the menu File/Re-load, or the short-cut Ctrl+w.

13LSD permits to assign initial values only to the elements of one type of object per time.
14Scatter plot graphs are generated using an external package, Gnuplot. LSD allows either to incorportate the

graph as image within a LSD graphical window, or to use a Gnuplot window. In the former case you loose some of
the quality, but you can manage the window as any other LSD window. Gnuplot windows are instead managed by
its own commands. Test both options, to appreciate the difference.

48

4.8 Setting the number of objects asda 49

4.8 Setting the number of objects

We have worked with one single copy of the MyObj object. The main advantage of objects is
that they can be multiplied in as many copies as desired, generating automatically all the copies
of their content, including, if present, sets of copies of contained objects.

Open menu item Data/Set Number of Objects/All types of Objects. The Browser window will
become as in fig. 4.10.

Figure 4.10: Setting the number of Objects

This table shows only one line, since there is only one type of object. Click on the number on
the side of label for MyObj and insert the number of copies of this object you want in your model.
For example, type 10. Pressing Ok you return to the Browser. As you see, nothing is changed,
since the Browser shows only the structure of the model and not the number of copies. However,
the graphical representation of the model now indicates that there are 10 copies of MyObj ’s in
the model.

The new copies have been created as identical copies of the only one previously existing, and
therefore also the initial values for minimum and maximum are identical in all the copies, and
the same settings for the elements (e.g. variables to save and/or to plot at run time) are applied.
When adding new copies one generally is interested in changing the initial values of their elements.

4.9 Initializing multiple elements

Open the menu Data/Init. Values to control for the parameters’ values15. Given the number of
copies of MyObj now there are 10 copies for each type of parameters. Though it is possible to
insert manually new values in each cell, the process is impractical as soon as there are a few tens
of elements to initialize. To avoid this tedious work LSD offers the possibility to use one of several
automatic functions to generate values for each line, that is, for each type of element to initialize.

The button Set All on the right of a label allows to set all the initial value for a parameter
according to one of the available rules. For example, set the minimum values to increasing values
starting from -100 and changing of 10 for each object. For doing this with Set All, click on the
button on the right of the label for minimum. Check on the option Increasing. In the box labeled
“Numerical data ...” there are two entry cells: type in the top cell, marked as Start, -100 and, in the
second entry marked Step enter 10. Press Ok to confirm and exit. Now minimum is set to -100

15If the initialization window is empty check that the browser is showing the right object. Initialization can be
made only for one type of object.

49

asda 50 Implementing LSD models: Example 1

for the parameter minimum in the first object, to -90 for the second, etc. Set also maximum as
starting from 100 and changing of -10 at each step. This will make the ten copies of X1 oscillating
on decreasing ranges.

4.10 Plotting multiple series

Running a simulation with the 10 copies will make no difference but that the series shown in
the Run Time Plot have now become 10, identified with different colors and assigned a different
number. Run the Analysis of Results after the simulation. You will see that there are now 10
series for each variable saved, each identified with a different number placed after the name of the
variable. You can choose as many variables you want to plot, by selecting them and then clicking
on the > button, or double-clicking on each of them. The selection rule respect the usual criteria:

• Click and drag: all the variables touched will be selected;

• Click on one series, keep key “Shift” pressed and select another series. All intermediate series
will be selected too.

• Click on several series keeping key “Control” pressed. Every series will be added to the
selection.

As you can see, the series in the Series Available are listed according to the sequence of objects
containing them, so that variables X and X1 are listed alternating. Since frequently we need to
select all the copies of one type of variable, the standard selection rules are rather cumbersome.
There are other two ways to perform this type of selection quickly and effectively.

Firstly, it is possible to click on the button Sort. This will rank the series according to their
increasing alphabetical order, therefore placing together all variables with the same label. Secondly,
we can use a rather sophisticated selection function, which is extremely helpful when dealing with
many thousands of variables.

Move the pointer of the mouse over one of the variables you want to select, and click with the
right button of the mouse. A new window will pop up, as the one shown in figure 4.11.

Figure 4.11: Selecting function in Analysis of Results window.

This windows allow to select and move into the Series Selected box all the series with a given
label, respecting certain conditions. Let’s ignore the options available (or see the Help button for
details), and leave selected the top-most option, Select all series. Press Ok and all the series with the
label will be moved into the central box. Pressing the button Clear will empty the Series Selected

list box.

50

4.11 Statistics asda 51

4.11 Statistics

We can now press the button Plot and generate a graph including all the series selected. The
initialization we gave to the parameters let us expecting that the oscillations of the variables in the
earlier objects should larger than those in the later ones. However, the graph shows independent
random series, and therefore it is difficult to individuate whether the expected property does
actually occur.

The easiest way to assess the properties of the series is to check the variance of the different
series. Click on the button Statistics, and search for the Log window. The window will contain one
line of statistics for each series selected, indicating: label and object’s indicator of the series (along
with the number of data considered); average value; variance; minimum; maximum; and standard
deviation.

As expected the average values are all around zero, the expected values of all the random
variables, while the variances decrease for the increment of the objects’ indicators.

4.12 Comments on equations’ code

The results we have obtained are quite obvious: each of the 10 copies of the object computed the
equations producing independent results. LSD automatically induced that the copy of the variable
X1 placed in the ith object had to use the parameters contained within the same copy of the
object, dispensing the modeller to insert redundant information as an index i.

This feature is extremely useful when the object structure of a model becomes even slightly
elaborated, with many layers of objects. When an equation is computed the same code must be
exploited by all the variables with the same label, included in different copies of the same type
of objects. How can we be sure that the equation makes use of the “correct” elements, when the
model contains many copies of each of them?

LSD “knows” the copy of the object containing the variable under computation. By default
any element appearing in the code of the equation is searched within the same object containing
the computing variable. If the required elements are not there, then LSD moves on to search in
“nearby” objects, continuing until the whole model is scanned. This feature has many useful
consequences. For example, as we have seen, the modeller needs not to specify within an equation
where the elements required are stored, and the same code can be used in several object structures.
Obviously, the modeller can, if necessary, force LSD to make use of a specific element, by indicating
which object should be searched for an element, though this is rarely needed.

In our case, the X1 variables are placed within an object together with the parameters mini-
mum and maximum necessary to compute them, and therefore the V("...") returns those copies.
For example, the copy of X1 in the 3rd object will compute its equation making use of the copies
of minimum, maximum and X contained in the same 3rd object. As we will see, programmers
have a wide variety of options to write code that makes use of values from users’ specified objects.
However, in the vast majority of cases you will not need to use these options, and can rely on the
LSD system to retrieve the correct values for you.

Exit from Analysis of Results and re-load the configuration with Control+w, so that we can see
another aspect of configuring a simulation run.

4.13 Simulation settings

The simulation runs we have launched up to now have all done 100 steps, since this is a default
value assigned to a new model and we did not modify. Of course, users can edit this and other
options for controlling the simulations that do not concern directly the computation of the model.
These options are set using the menu item Run/Sim. Settings which shows a window as in fig. 9.6.

The options control the following behaviour of the simulation runs:

• Number of Simulations: by default users run one single simulation per time, control the
results and then change either initial values or the equations before testing another (single)
simulation run. The results are stored in memory only, unless the user saves them explicitly

51

asda 52 Implementing LSD models: Example 1

Figure 4.12: Setting simulation options: number of simulation runs, time steps per run, pseudo-
random values, and debugging options.

after the simulation run. However, in certain cases one may be interested in knowing how
the model behaves repeating several times the simulation using different random values, to
test the robustness of some result. In these cases users can set the number of simulation
runs to be higher than 1. The results of each simulation run (i.e. the data produced during
the simulation by the variables marked to be saved) are stored into files (with extension
.res) at the end of each simulation run. Moreover, the system generates a summary file
(extension .tot) containing the very last value for each variable so to compare the values of
saved variables from different simulations. Analysis of results can load any of these files and
analyse the results there contained. Notice that if any variable is supposed to create Run
Time Plots during a simulation, every simulation will produce a new Run Time Plot. If you
set ask for 100 simulations, this will create 100 windows. The menu item Run/Remove Run

Time Plots will remove all the windows at once.

• Initial Seed: computers are not able to produce random events. However, there are numer-
ous mathematical tricks that provide sequences of values that have the same properties as
random values. Setting the same “seed” for repetitions of the same simulation implies the
use of exactly identical “random” events (which, in fact, are called “pseudo-random” events).
Instead, setting different seeds produces different random events. If there are more than one
simulation runs to be executed, the system automatically provides increasing seed values at
the starting of each simulation run, and the same seed value is used to name the file where
the results are stored, so to be able, if necessary, to reproduce one specific run with the same
(pseudo-)random events.

• Simulation steps: the number of steps to be executed for each simulation run.

• Insert debugger at: : most of the time spent by programmers on whatever software project does
not concern writing code, but the investigation of anomalous behaviour of the program, like
unexpected crashes or absurd values. Simulation modelling is not an exception to this rule,
so LSD provides a “debugger”, that is a function that supervises the running of a simulation
and, if necessary, interrupts it giving the modeller access to each and every value of the model
in order to control what is actually going on in the model at that time. With this option
users determine at which time step the debugger must be activated. If this value is 1, then
the debugger is active from the very time step. If it is 0 or a negative value, the debugger is
never activated. If it is, say, 56, then the debugger is activated at the 56th time step. When
the debugger is active the simulation is interrupted as soon as one of the variables marked
to be debugged (see variables’ options, fig. 4.5 at pag. 44) completes its equation16.

16Notice that LSD users can also use standard C++ debuggers, like GDB (included in the Windows distribution)
which instead give access to a simulation run not every equation completed, but every single line of code completed.
However, the use of these debugger is quite complicated, and does not allow to access model data. Instead, using
the LSD debugger is simpler and gives full access to any data of the model, including using the Analysis of Results
module on the data produced up to the time of interruption.

52

4.14 Using lagged variables asda 53

All the settings above, but the last one concerning when to activate the debugger, are stored
in the file together with the model configuration.

4.14 Using lagged variables

One of the main reasons for using simulation models is that understanding the result of even
simple temporal dynamics is very complicated. The equation we have implemented until now are
not really dynamical, since they compute values as elaboration of present-time values, that is, at
the same time step. We have a real dynamics when we make elaborations over values from the
past.

The possibly simplest dynamical function is the so called random walk. The equation for random
walk is (note that we now use the temporal index t):

Rt = Rt−1 + U(−k,+k)

That is, the value at any time steo t of a variable following a random walk is equal to the value
of same variable at the previous time plus a random value, drawn from a range which normally
includes both negative and positive values. Let’s implement a LSD equation to see how to express
the variable’s values with temporal lags. The code for the equation of the random walk is17:

EQUATION("RandomWalk")

/*

A random walk variable whose range of oscillation is in between

’minimum’ and ’maximum’

*/

v[0]=VL("RandomWalk",1);

v[1]=V("X1");

RESULT(v[0]+v[1])

As you see, the equation uses the function VL("Var",n) (where n is a positive integer). This
function works as the original function V("Var"), but for the fact that it returns not the value at
the same time step, but at n time steps before, lags. Note that V("Var") can be expressed also as
VL("Var",0).

Let’s add this variable to the model we already implemented. Save the equation file and run
the LSD model program (Model/Run). Load the configuration from the file (File/Load), reach for
the MyObj (double-click on it) to add the new variable RandomWalk as we have done before
for X and X1. Now we are ready... to face our first abrupt simulation crash.

Run the simulation and you will see the alarming message shown in fig. 4.13.

Figure 4.13: Simulation aborted for a serious logical error.

This window tells us that LSD has encountered a logical error preventing it from continuing the
simulation. This means that somewhere we have written some code for an equation that is perfectly

17At this point we assume the reader is able to remember how to use the menu Insert LSD Scripts.

53

asda 54 Implementing LSD models: Example 1

legal from the computational viewpoint, but, in the specific context of model status, prevents to
continue the simulation. Let’s see now how we must proceed in order to find out where the problem
is.

We may already suspect that the problem lies in the equation for RandomWalk, since it is
after the insertion of this equation that the model failed. However, to be confirmed on this intuition
let’s follow the indication of the error window and read the messages in the log window:

...

Lag error: Variable RandomWalk requested lag 1 but available only 0

Fatal error detected at time 1. Offending code contained in the

equation for Variable:

RandomWalk

...

The text above says that a “Lag error” has occurred concerning the variable RandomWalk.
The second part of the message tells us the time step and the equation during which the error
occurred, confirming our suspects.

The problem is that LSD tries to save as much memory as possible in order to allow for simulating
very large models for many time steps. When a variable computes its value, the memory used to
store this value is freed when a time step is completed and a new one begins to be computed.
Therefore, if we want to know the value of a variable at time t− 1 during time step t, we need to
explicitly tell the system to maintain the value for one time step more than the default.

We should normally do this when creating a variable. If you remember, when adding a variable
to the model we have two fields available: one for the variable’s label, and one for the Maximum

lags used, which is set to 0 by default. We should have told LSD when creating RandomWalk that
this variable needs to store 1 lagged value.

We didn’t indicate the correct lags for the variable at the time of its creation, so we need to
fix this problem. However, at this moment the LSD model program is in the status of aborting a
simulation. The only commands available in this status are shown in the window shown in fig.
4.13. We can:

• Return to LSD Browser: return to the Browser, terminating the simulation at this point.

• Analysis of Results: open the analysis of results window to analyse the data produced so far.
understand why a model

• Data Browse: inspect the state of each and every element of the model. This functionality
(which we still have not explored) allows to understand what is the value of each element
(even the ones not saved) when the crash occurred.

• Quit the LSD program: kill the LSD model program altogether.

Let’s return to the browse and re-load the configuration, so that we can edit the new variable
increasing the lagged values. Move the Browser to show the object MyObj and double-click on
the variable RandomWalk. We are shown the options’ window; double-click on the label of the
variable (in red on the top of the window) and we have the possibility to modify the nature of this
element (see fig. 4.8, pag. 47).

Select the option Variable and modify the number on the cell after the label Lags to 1. Press Ok

and you return to the Browser. As you see, now RandomWalk appears in the list of Variables of
MyObj with attached the number 1, while X and X1 have 0. This means that RandomWalk
is a 1 time step lagged variable.

Before being able to start a simulation run we still have to provide one piece of information.
Having added a lag to a variable we need to tell the system which values it needs to use at the very
first time step, that is, computing when computing the values RandomWalk1 = RandomWalk0 +
X11. Since there were no time step 0, these values must be provided by the modeler. They will
obviously affect the results, since they indicate the starting point of the random walks.

54

4.15 Multi-layered object structure asda 55

RandomWalk0 is an initial value, exactly as any parameter’s value. To set this we use the same
interface used to set minimum and maximum : choose Data/Init. Values and you are shown the
window to set all the parameters of MyObj plus the newly inserted variable’s lagged value18.

Let’ set RandomWalk -1 to 1000 (use Set all for setting all the values in the 10 copies of the
object) and return to the Browser. Double-click on the RandomWalk label in the Variables list and
set on the options for saving and debugging this variable.

Return to the Browser and run the simulation (menu Run/Run). After that enter in Analysis

of Results and plot some time series for the RandomWalk variables to observe their dynamics.
When finished, exit the Analysis of Results and, in the main Browser, re-load the configuration with
Control+w.

4.15 Multi-layered object structure

Until now we have worked with a model with only one type of object, MyObj. It is a “flat”
model, in that every copy of the object works on its own, independently from the others. However,
generally models includes objects at different hierarchical levels. These “deep” models have agents
(e.g. firms) interacting via a higher order entity (e.g. market). For example, a model for a market
may contain an object Market containing, in turn, two types of objects, say Demand and
Supply. Therefore, Market is “higher” in the hierarchy, representing a more aggregate element
than Supply or Demand. In turn, Supply may contain several objects Firm ’s, as objects still
lower in the hierarchy (i.e. smaller). In this paragraph we will see how LSD manages multi-layered
models.

Let’s modify our model where the MyObj we used so far is contained within another object in
which to compute aggregate statistics, like the average value for all the random walk variables19.
Place the Browser to show the MyObj and then choose menu item Model/Insert New Parent. In
the resulting window type the name of the new object, say AggregateObj. After confirming, verify
that your model now includes Root containing AggregateObj containing MyObj.

If you open now the interface to set the number of copies for the objects (Data/Set Number of

objects/All types of objects), you will see that the window shows one copy of the the newly created
AggregateObj object type. On the right of the line for the new object there is a text signaling
that other objects are contained within those objects. Click on the text to ask the system to show
the additional objects20. and the window will create a new indented line.

This new line shows firstly a symbol ’+’, indicating that it is one layer below the objects at
the highest layers, conventionally referring to the objects contained in Root. It will then indicate
the name of the object the line refers to (in red), and the name of the copy of AggregateObj
containing the group for the line. Eventually, we have the number of copies for the whole group,
the button labeled with 10.

Click on the red label AggregateObj of the only line for this type of object and type 3 to the
resulting window. After the confirmation you will be now shown three distinct groups of MyObj,
one for each copy of AggregateObj. Notice that each group has exactly the same number of copies.

LSD constraints each copy of an element to have all the same structure, although the actual
numerical content may obviously vary. We therefore are forced to have at least one descending
object MyObj within each copy of AggregateObj. When creating new objects, as we have just
done creating 2 additional copies of AggregateObj, the system takes one copy as templar to
determine the numerical content (e.g. parameters and number of descending objects) of the new
copies. Hence, having only one group, that one had be replicated.

You can change independently the number of copies for each of the groups of MyObj ’s contained
within each of the 3 copies of AggregateObj, or modify at once all of them. Click on the button
with the number 2 of one of the lines for MyObj, for example the second. A new window will
appear, like that reported in figure 4.14

18Note that if we had defined RandomWalk having 2 lags (because an equation contained the expression
RandomWalkt−2), then we would have two lines in the initial values: one for RandomWalk0 and another for
RandomWalk−1.

19Actually, we already have a higher level object, Root. But, as already said, it is better to never use Root to
contain any element but objects.

20Alternatively, you could type ‘2’ into the entry for the hierarchical level to show and click on Updated.

55

asda 56 Implementing LSD models: Example 1

Figure 4.14: Setting the number of descendants. It is possible to modify a single group, or all the
groups in the model. Moreover, it is also possible to choose which instance of the existing objects
to copy initial values from.

This window refers to a specific group of objects MyObj, namely, the group contained in the
second copy of AggregateObj. You can decide to modify only the single group of objects, or affect
all groups of MyObj. Notice also that when you decrease the number of elements in a single group
you have the possibility to decide individually which copy in the group to remove. If this does
not matter, by default LSD will remove the “leftmost” objects, that is, the final ones in the group,
under the assumption that they are those being added more recently.

Using the features of this window generate three copies of AggregateObject containing 10,
20, and 30 copies respectively. When done press on Exit to return to the Browser. Notice how
the graphical representation of the model on the right of the Browser now expresses the new
configuration.

Now that we have created an aggregate object, let’s place in it a variable. Put the Browser on
the AggregateObject and add a variable labelled AverageRW (Model/Add a Variable). We need
to write the equation for this new variable, and then re-create a new LSD model program replacing
this one. However, for the time being save the configuration (File/Save) but keep the program
running. It is easier to write the equations having at hand the model structure to visualize. When
the equation will be ready we can close the LSD model program and compile a new one with the
new equation.

4.16 Equations for multi-layered models

Back in LMM let’s write the equation for AverageRW. The code should simply implement the
expression for the average value of all the RandomWalk, supposing having n copies of objects
MyObj :

AverageRWt =

n∑
i=1

RandomWalkit
n

where the index i refers to a succession of copies of the objects MyObj, and n to the total
number of copies.

However, in LSD we don’t make use of indexes, nor we need to know the number of copies before
starting the computation. From the programming viewpoint we have the problem of ensuring
that each copy of AverageRW is computed using all, and only, the values of RandomWalk
contained in the group of objects MyObj descending from one specific copy of AggregateObject.
That is, we want to be sure, for example, that the second copy of AverageRW does not include
in the computation values of RandomWalk from objects contained in the first or third copy of
AggregateObject. Moreover, when writing the equation, we cannot know how many copies of
RandomWalk are used, since this is defined by the users in the model configuration, and we
want our equation to work in general for any number of copies.

The language used for the LSD equations permits to overcome these problems in a very simple
and intuitive way. The operations we are going to write is the computational equivalent of the

56

4.16 Equations for multi-layered models asda 57

operations described below. It is anyway necessary define an element of programming language:
the pointer. Pointers in programming are a special type of variables. A common variable is a label
associated to a numerical value, and programmers can assign a value to the variable in a certain
line and use this value later on. Pointers have the same function not for numerical values, but for
objects: they are variables for objects, but numerical values. Hence, you can assign an object to a
pointer, and the use the object pointed to by the pointer.

In writing the equations LSD offers both local variables (v[0], v[1], etc.) and pointers, called
cur, cur1, etc. Hence, the pseudo code for computing the average of values in a group of objects is
the following:

1. define two variables, v[0] and v[1], both initially set equal to 0;

2. define a pointer cur and set it to point to the first MyObj in the group;

3. add the value of RandomWalk for the object in cur to v[0];

4. add 1 to v[1];

5. are there more objects, after the current one?

• Yes: replace as cur the object next to its current copy, and go to step 3.

• No: go to step 6.

6. assign to the variable as result the division v[0] / v[1]

In slightly more formal notation figure 4.15 describes the same operations.

Figure 4.15: Flow chart to compute an average. Command FIRST(cur) indicates the first object in
a group and NEXT(cur) replaces the pointer pointing to cur with its following object, like Xi+1 in
respect of Xi with vector notation.

The procedure defined by the pseudo-code above computes the average value sequentially,
scanning one element per time and cumulating two sets of values for the denominator and numerator
of the division.

In LSD equations commands like this are very frequent, thus the expression is very simplified.
The code for the equation is the following:

57

asda 58 Implementing LSD models: Example 1

EQUATION("AverageRW")

/* Average value of all the RandomWalk

values from the descending objects

*/

v[0]=0; v[1]=0;

CYCLE(cur, "MyObj")

{

v[0]=v[0]+VS(cur,"RandomWalk");

v[1]=v[1]+1;

}

RESULT(v[0]/v[1])

Let’s see in detail the commands in the code above, keeping in mind that the equation is
computed for a variable contained in AggregateObj and must use the values of RandomWalk
contained in the lower level MyObj.

The first two lines of the code simply set to 0 two temporary variables, which will be used to
cumulate the values of RandomWalk ’s and the number of their copies of MyObj. The actual
calculation is done in the command CYCLE(cur,"MyObj"){repeated code}. This command causes
the code contained in the subsequent group of lines to be repeated again and again as many times
as many copies MyObj can be found. Notice that the LSD “knows” the object containing the
variable that it is computing at any time; call this object the object “under computation”. LSD

is therefore able, using the command CYCLE, to scan all and only the objects descending from
the object under computation, ignoring the copies contained in other copies of AggregateObj.
Therefore the number of repetitions depends on the number of copies of the objects whose label is
MyObj 21. During each repetition the cycle assigns to the pointer cur a different copy of MyObj.

In the body of the cycle, that is the code included in between the two curly brackets, there are
two commands. Both commands cumulate numerical values. The second cumulate simply 1’s, so
that, after the cycle, v[1] contains the number of repetitions of the cycle, that is, the number of
copies of MyObj. The first line cumulates in v[0] a more complicated stuff: VS(cur,"RandomWalk").
This command is another form of the V("...") family, returning the values of elements (i.e. vari-
ables or parameters) of the model. The specificity of VS("...") is that the programmer must
specify the object where the element is contained. The difference with the general form V("...")

is that the simple form assumes by default that the object where to search the element to evaluate
is stored in the same object22.

The general form V("...") cannot be used in this equation. In fact, the code for the equation
of AverageRW is executed at level of object AverageObj. In these objects there is no variable
RandomWalk so the system should start a search for an object containing the desired variable.
But all the descending objects MyObj are equally “distant” from the object AggregateObj,
where the equation for AverageRW is executed, and therefore the system cannot correctly find
any specific copy of MyObj 23.

Using VS("...") instead, we tell the system in which object is contained the element to compute.
We tell the system to use the copy of RandomWalk contained in cur, which, through the iterations
of the cycle, “points” sequentially to all the copies of MyObj descending from the AggregateObj
whose RandomWalk has to be computed.

Eventually, when the cycle is finished, the equation has scanned every MyObj ; for each of
them the equation has added 1 to v[1] and the value of RandomWalk to v[0], so that we have
the denominator and numerator of the division for the average, which is then assigned as result.

21If there are no copies of MyObj descending from the AggregateObjext containing the AverageRW whose
equation is executed the internal calculations in the cycle are never executed.

22Within the code for equations modellers can access the object containing the variable under computation,
represented by the pointer p. Therefore, the V(‘‘X’’) is actually equivalent to VS(p,’’X’’).

23Using V("RandomWalk") in an equation for a variable in AggregateObj will return always the value of the very
first copy of RandomWalk.

58

4.17 LSD Simulation Manager asda 59

4.17 LSD Simulation Manager

As we have seen a modeller defines the model structure and the equations, described by chunks of
generalized code. However, a program needs a lot more of information to be able to run, determining
what the processor must do and when. Users can safely rely on LSD to fill any explicitly missing
information required in order to have a simulation running correctly (i.e. coeherently with the
model’s definition). In particular, LSD ensures that the variables’ values used in the equations of
other variables without lags (and therefore requiring their equations being computed before those
where the present-time values are used), are updated in the correct order. Moreover, LSD ensures
that equations making use of elements present in many copies in the model choose the correct
values.

LSD exploits a default system to ensure that a simulation run performs the most likely opera-
tions, though modellers can, if necessary, over-run the default system. In this paragraph we give
a hint on how LSD manages to generate simulation runs out of the information modellers provide.
Readers not interested in these technical details can skip this paragraph.

The core of a LSD model program running a simulation is a system, called LSD Simulation
Manager or LSM. Its task is to assemble all available information concerning the model and produce
an actual simulation run24.

A simulation run is a sequence of time steps, within each of them all the variables must be
updated (i.e. their equation executed) according to a specific order, that is, for example, which
equation must be executed at the beginning of the time step and which can be executed at the
end. The order of updating is important, since it determines whether the values of a variable used
within the equation for another variable are those from the previous time step or those from the
current one, and, in general, the results obviously differ.

Some simulation languages requires modellers to define explicitly a scheduler, that is, the or-
dered list of equations to be executed within a time step. LSD uses a different approach, generating
on the fly the schedule of the execution of equations by analysing the implicit temporal constraints
as can be deduced from the very code of the equations. For this operation the LSM makes use of
two bits of information: the general clock of the simulation run (called t) and a field contained in
each copy of the variables indicating what was the simulation time when the variable was lastly
computed, a field called lastupdate.

Let’s see how the LSM exploits this information to ensure the correct schedule of updating
within a simulation step. At the start of a simulation step the first operation performed by the
LSM is to increase the time counter of one unit. After that the LSM begins scanning all the objects
in the model and, within each of them, controls all the variables contained. For every variable
considered the LSM compares the simulation clock with the field lastupdate of the variable. If
these values are different (that is, lastupdate is smaller than t) than the clock, then the LSM begins
the execution of the equation for that variable, otherwise (lastupdate=t) it skips the variable and
moves to the next one.

While executing the equation for a variable the code may require the value of other variables
in the model, typically through the command V(...), as happens in the computations for X1,
RandomWalk and AverageRW in our example model. If the values of the variables is requested
with a lag, then the system can use the value as inherited from the previous time step. Otherwise,
if the variables are requested as values computed at the present time, they may have it or not.

The LSM is able to distinguish this cases, comparing the lags of the values required in the
equation’s code, with the time clock of the simulation and the lastupdate field of the variables
concerned. When a requested variable’s value is available LSM returns the value to the equation
under computation directly. When the value necessary to continue the computation of an equation
is not available, it means that the variable did not computed its equation at the current time step
as yet. In other terms, the scheduler should have computed firstly that equation, and later the one
it (erroneously) has already started. In this case the LSM “corrects” its mistake by interrupting
the computation of the variable to the stage it already reached, and moves to execute the equation
for the required variable. When that computation is completed, it then returns to the interrupted

24Or, in case of errors, interrupt the computation, avoid program crashes, and provide as much information as
possible concerning the problem encountered.

59

asda 60 Implementing LSD models: Example 1

equation, provides the updated value of the variable, and continue the computation. When the
computation for the equation is terminated, and the resulting value stored in the variable, its field
lastupdate is updated in line with the clock of the simulation.

Note that the system may iteratively continue for several cycles: even the newly computed
equation may require, in turn, other values not yet available. LSM can generate, if necessary, a
long chain of half-computed, interrupted equations until it manages to compute the last one, and
then rolls back all the interrupted computations completing them in reverse order.

Notice that the way the LSM arranges the order of completion of the equations is independent
of the order for the starting the computations of the variables. Therefore it is possible to use any
rule for scanning the variables of the model; in practice, LSD begins by (trying to) compute firstly
the variables in the higher object (Root is always the first). When the scanning encounters a
variable that have been already updated, because another variable requested its new value, it does
not re-compute equation.

An important property of the LSM is that the actual order is decided at run-time. There may
be cases where a variable’s equation contains two alternative computations (distinguished by an IF

... THEN ... ELSE command), requiring two different order of updating conditional on certain
events. The LSM will automatically generate different schedules of updating, depending on which
condition applies at every step.

For a similar reason, LSM guarantees that the code for equations can easily be moved across
different models. Depending on the equations for the variables within an equation, different models
will generate different schedules, without the necessity for the users to pay attention to the schedule.

The LSM allows also to modify, possibly heavily, the schedule of a model in an extremely simple
way. For ensuring that one computation (e.g. for variable Z) takes place before the completion
of another variable (say Y), it is sufficient that the very first line of the code for the equation of
Y contains the command V(‘‘Z’’). The LSM ensures that any computation occurring after that
line, variable Z will be updated, that is, its computation already performed.

Lastly, LSM is able to spot inconsistencies in the model, avoiding never ending cycles where one
or more variables require both to be computed before the other. For example, the “models” made
of two equations: Xt = Yt and Yt = Xt is not computable, in that it would generate an infinite
bouncing between the two equations. As we will see the LSM identifies this potentially fatal errors
and issues messages helping the modeler to fix the problem.

The equations we have written for our example model are the computational translation of a
difference equation model that may be expressed with the following equations:

AverageRWi
t =

ni∑
h=1

tRandomWalki,ht
ni

RandomWalki,jt = RandomWalki,jt−1 +t X1i,jt
X1i,jt =minimumi + (maximumi −minimumi)Xi,j

t

Xi,j
t = r.v.U(0, 1)

(4.2)

The LSD representation for these equations, as we have seen, can neglect the time suffix t, which
is redundant (but includes the lag indication), and relies on the model’s structure of objects instead
of using the impractical and error-prone indexing system. In the rest of this paragraph there are
some further details on how LSD replaces the indexing system.

In our case, as in practically any model, there are many copies for each variable, one in each copy
for any type of object. Every copy of the same type of variable executes the same computations,
though, obviously, make use of different values. For example, every copy of RandomWalk needs
its own lagged value and its own copy of X1.

LSD manages to obtain this by using an information stored into the variables: which object
contains it. When the equation is activated all the LSD functions, like V("..."), “know” the
copy of the object containing the variable whose equation is executed. This bit of information
is available to the modeller, too, as the object pointer (i.e. the C++ variable storing objects)
called “p”. For example, the expression V("X1") is equivalent to the expression VS(p,"X1"). In
the former case we rely on LSD to find out the correct copy of X1. The system is executing the
equation for RandomWalk in some copy of MyObj, so that V("X1") will return the value of X1
contained in the same object. Instead, in the second case, using VS(p,"X1"), we tell the system to

60

4.18 Extending the model: quality and sales asda 61

return the value of the copy of X1 in p, which is the same copy of MyObj containing the copy of
RandomWalk under computation.

In practice, LSD dispenses from the use of indexes by using the more flexible concept of “mem-
bership” to an object. If a variable’s equation requires another element the system will provide the
copy of the element contained in the same object or, if it is not there, in the “closer” object con-
taining the variable under computation. This system ensures that modellers can avoid to specify
exactly where each element can be found, and also allows to use the same code of an equation in
different model structures, where the same elements are stored in different objects.

This automatic system to retrieve elements system is useful most of the times, but not always.
There are cases where the modeller needs to indicate in an equation a specific copy of an element
chosen according to elaborated rules. For these cases LSD provides a set of functions allowing
modelers to express any possible strategy.

4.18 Extending the model: quality and sales

We are proceeding gradually adding new equations one by one. This style of proceeding is highly
valuable in avoiding “complexity traps” generated when one tries to write a complete model before
testing any of its components. LSD favors this style since the simulation program “adapts” the
simulation run by itself, depending on new elements introduced, changes in the lags of existing
variables, etc. Given the speed with which a run can be produced, possible corrected, and analysed,
it is possible to test the effects (and the correctness) of each and every variable added to the model.

For the moment we have implemented just a set of random variables that independently create a
set of random walk processes, and we have computed an average of these processes. Let’s interpret
this model as a metaphor for (very simplified) processes of technological improvements.

That is, we interpret one MyObj as a firm performing R&D whose result (totally random) is
a quality level for its product (the RandomWalk variable). We want to link the relative quality
of each firm (relative to the average quality) to the level of sales. In practice, we need two new
variables, and their equations, expressing an indicator of competitiveness based on the quality of
the firms, and the levels of sales. In formal terms the equations are:

RelativeQualityt =
RandomWalkt −AverageRWt

AverageRWt

Salest = Salest−1(1 + alpha ∗RelativeQualityt)
The variable RelativeQuality should not pose any problem of interpretation. If a firm (i.e.

MyObj) has a quality level (i.e. RandomWalk) identical to the average of all firms, then its
relative quality is null. If it is higher than the average, its relative quality is positive, boosting its
sales, otherwise it is negative, decreasing sales.

The second equation states that the level of sales for a firm is inertial, changing slowly in the
the direction of the sign of relative quality. The equation says that the value of sales at any time
step equals its previous value plus a share (alpha) which is added or removed depending on the
relative quality.

Note that the equation for sales relates sales rate of changes to the relative quality. The absolute
level of change in sales depends also on the past level of sales.

Let’s see the equation’s code for RelativeQuality :

EQUATION("RelativeQuality")

/*

Compute the relative quality

of a firm as the relative ratio

of the difference between RandomWalk

and AverageRW

*/

v[0]=V("RandomWalk");

v[1]=V("AverageRW");

RESULT((v[0]-v[1])/v[1])

61

asda 62 Implementing LSD models: Example 1

There is nothing new in this equation, but it is worth noting something we still did not meet
in our model. RelativeQuality is a variable stored in MyObj. Therefore, the V("RandomWalk")

expression returns the value in the same copy of MyObj containing the copy of RelativeQuality
executed. But what about V("AverageRW")? This is a variable contained in AggregateObj that is
in an object “higher” than the one where the equation is executed, MyObj. How does LSD manage
this situation? Assuming the obvious: the copy of AverageRW returned in each equation is the
one contained in the AggregateObj copy containing the copy of MyObj whose RelativeQuality
is executed. This automatic retrieval of data in “higher” objects is possible because LSD models are
strictly hierarchical, so that a lower level object is directly linked to only one higher level object.

The second equation’s code does not pose any particular problem of interpretation:

EQUATION("Sales")

/* Compute the level of sales as the relative

growth proportional to alpha of the

relative quality */

v[0]=VL("Sales",1);

v[1]=V("RelativeQuality");

v[2]=V("alpha");

v[3]=v[0]*(1+v[2]*v[1]);

RESULT(v[3])

Now we can compile the model and, if there are no grammar error in the equations’ code25, we
can use LSD model program to make the necessary modifications to the configuration of the model:

1. load the configuration file (File/Load);

2. move the Browser to show the object AggregateObj ;

3. add the parameter alpha (Model/Add a parameter);

4. initialize the parameter to 0.2 (Data/Init. Values);

5. move the Browser to show the object MyObj ;

6. add the variable Sales (Model/Add a variable, indicating that it uses 1 lagged value);

7. add the variable RelativeQuality (Model/Add a variable);

8. initialize the values in MyObj (Data/Init. values) setting all the Sales’ values to 1000.

Before running a simulation double-click on the labels for Sales and RelativeQuality setting
on the option to save the variables’ values, so that we will be able to analyse their values after the
simulation run.

If there are errors appearing after the simulation has been launched, chances are that you
misspelled some of the newly inserted variables or parameter. Remember that elements’ spelling
must be identical in the LSD model configuration and in the equation file. If you have an error,
check in the Log window which element could not be found by the system. When a mis-matching
error occur you may need to change either the label in the code of the equations or the label in
the configuration.

Another frequent error by beginners is to forget that LSD model programs cannot execute the
code of the equations merely because it has been written. After coding new equations, the modeler
needs to shut down the existing LSD model program and compile a new one. Only after a re-
compilation the code for the new equations can be exploited.

25If there are errors, choose not to run the existing LSD model program and see the second line in the window
Compilation Results. There should be a line number, indicating approximately where the error has been found.

62

4.19 Assessing the model’s behaviour asda 63

4.19 Assessing the model’s behaviour

Let’s see how the model behaves. First of all we need to configure the initial values in a sensible
way. Set the number of AggregateObj to 1 containing ten copies of MyObj, and the alpha
parameter set to 0.2. Set the values for parameters minimum and maximum are all set to -10
and 10 respectively. This ensures that the random walks are centered on 0 without systematic
biases. Finally, set the all the lagged values for RandomWalk and Sales to 1000, assuming
identical initial conditions for all the firms in the model.

Any user of LSD running this model with the above initialization will produce exactly the same
results. For example, in figure 4.16 it is reported the series for the relative quality levels over the
first 100 time steps.

1 25 50 75 100

ï0.126884

ï0.0712957

ï0.0157075

0.0398807

0.095469

RelativeQuality_1_1 RelativeQuality_1_2 RelativeQuality_1_3 RelativeQuality_1_4 RelativeQuality_1_5
RelativeQuality_1_6 RelativeQuality_1_7 RelativeQuality_1_8 RelativeQuality_1_9 RelativeQuality_1_10

Figure 4.16: Relative quality over time steps from 1 to 100.

One may wonder how it is possible that supposedly random events happen identically on any
computer run. This is one of the advantage of using simulations. You do have random events, but
you can re-run a simulation using exactly the same set of (pseudo-)random events so as to control
exactly what happened during (pseudo-)stochastic events. If you want, as usually is the case, to
run the same simulation (i.e. same initialization) with different random events, then you need to
change the seed value, which is set in menu Model/Sim.Setting.

We can control whether the model produces, as expected, a relation between the values of sales
and RelativeQuality. In Analysis of Results select all the RelativeQuality and all the Sales
series. Then check the options for Cross Section, XY plot, Points, and press Plot. The new window
appearing will ask which time step you want to consider the data, besides other options. Leave the
existing default value and press Ok. The resulting graph will show the points whose coordinates
are given by the values of the couples of RelatieveQuality and Sales for each MyObj at time
step 100. As we can see, the points indicate a roughly increasing relation, as expected.

Is this model a good representation of the purported effect of quality on sales? If we analyse the
model results we see that, actually, something is wrong, if not technically (the model does exactly
what we told it to do), but the “scientific” interpretation of the results is inconsistent.

In fact, the equation for sales is implemented as a function of the relative quality, in that,
implicitly, we would like to have some firms increasing their share of the market and some decreasing
them. This representation would implicitly suppose that the total level of sales, the dimension of
the market, would remain constant. Is this the case?

Though a mathematically skilled reader would immediately induce the answer from the func-
tional form of our variables, the laziest may instead prefer to exploit the model to investigate
the matter. For example, we may try to generate the increments in sales of the different firms,
DiffSalest = Salest − Salest−1. We know how to introduce and write the equations for such
a variable. However, let’s use another way, to introduce a new command for the writing of LSD

equations.

63

asda 64 Implementing LSD models: Example 1

When the model computes the level of sales we already have available the past level of sales,
so that we may directly compute the values for the variable we are interested, call it DiffSales,
during that computation. Though LSD forces the code for a variable to generate only one single
result, it is possible to use a special command to write values on any element of a model. Consider
this modified code for the equation for Sales:

EQUATION("Sales")

/* Compute the level of sales as the relative

growth proportional to alpha of the

relative quality */

v[0]=VL("Sales",1);

v[1]=V("RelativeQuality");

v[2]=V("alpha");

v[3]=v[0]*(1+v[2]*v[1]);

WRITE("DiffSales",v[3]-v[0]);

RESULT(v[3])

The new version of this variable does not modify the result produced by for the variable Sales.
But, although obviously an equation can return a single value for its variable, the code for the
equation may contain any C++ (and LSD-specific) statement. In the above example we requested
the equation for sales to write a value (the difference between the lagged and current sales) onto
an element of the model, called DiffSales. We can now introduce a parameter in MyObj labelled
DiffSales that will contain the sales’ differences for each firm in the model.

It is worth to notice that the use of a WRITE command is, in general, non necessary, since
a variable with a specialized equation may do the same job. Generally, the reason for using
the command WRITE(...) is to speed up the implementation of the model, or the execution of
simulation runs. This command needs also to be used with caution because it does not allow the
automatic management of updating. In fact, being a parameter, LSD does not “know” the time
when DiffSales is written; therefore, if the model were to use the value of DiffSales in other
equations, it would be necessary to manually ensure that the values are used in the correct way
(before or after it is updated by equation for Sales). In our case we do not run any risk, since the
parameter is used only for statistical purposes and does not affect other results of the model.

Let’s compile the new simulation model program and load the existing configuration. Move
the Browser to show the object MyObj and add the parameter DiffSales. You need to open
the interface to initialize the elements of these objects (menu Data/Init. Values) because, being a
parameter, LSD requires it to be initialized, even though the initial values are never used in the
model. Just open the initilization window and close it, which is sufficient to signal that the default
value (zero) is accepted by the user. Remember also to check on the option to save these values,
by double-clicking on its label in the Browser.

4.20 Generating new series

Run the simulation and open the Analysis of Result module. You will find the series for the new
parameter DiffSales; select them and plot their results after having reset the options to the default
values (Time Series, Lines, Sequence). If the assumption that any increase in one firm’s sale should
be matched by an equal decrease by other firms’ sales were true, the average value of DiffSales
across all MyObj ’s should be null. Is this the case? The graph is not conclusive in this respect,
so we need to find a more precise tool. We may re-run the same simulation adding a new equation
computing the average, but here we use a different method: generation of new series from those
saved in Analysis of Results.

The module we use so far only to to show the results saved from simulation runs has the
possibility to create new series from manipulating the available series. Clicking on the Add Series

button in between the two main listboxes list the possibilities offered to add new series. Choose
the option to Create one series ... and you will be shown a window as in figure 4.17.

64

4.21 Replacing a variable asda 65

Figure 4.17: Generate new series as elaboration from the currently selected ones. The new series will
appear as a single statistics computed over time (first option on the top) or across series (second option).
Choose the statistics to be computed, the name of the new series and a tag index to be used.

Leave the first option selected to generate a series across times steps. Choose Sum as elaboration.
Note that the label text reflect the origin of the series and the elaboration chosen (you are free
to change it). Pressing Ok the new series will be added to the list of available series. Empty the
central list and plotting a graph of this new series; it will be obvious that the sum of the differences
is not null across the simulation steps, and therefore we need to modify the model if we want to
force the dimension of the market simulated in our model to remain constant.

4.21 Replacing a variable

Given our interpretation of sales improving according to the relative quality in respect of the
average, what we need to change the way the average is computed. The simple average we have
used so far considers all firms as equally important. Instead, if we want to interpret this average as
an indication of the average quality for a general consumer, we need to ensure that the individual
firms’ qualities are compared with the weighted average of qualities, where the weights are given
by the level of sales.

In the next paragraph we will implement the weighted average, and we will discover an unex-
pected error, and the tools to fix it offered by LSD.

The equation for a weighted average is simply:

WAverageRWt =

n∑
i=1

RandomWalkit ∗ Salesit

n∑
h=1

Salesht

This expression guarantees that firms’ qualities with higher sales levels “count more” than firms
with lower level of sales. Consequently, we will not observe an absolute growth of the total level of
sales, but only a different distribution of a constant amount. More on this when we will be able to
run the model.

The code for WAverageRW is:

65

asda 66 Implementing LSD models: Example 1

EQUATION("WAverageRW")

/*

Weighted average value of all the RandomWalk

values using Sales as weights

*/

v[0]=0; v[1]=0;

CYCLE(cur, "MyObj")

{

v[3]=VS(cur,"Sales");

v[2]=VS(cur,"RandomWalk");

v[0]=v[0]+v[2]*v[3];

v[1]=v[1]+v[3];

}

RESULT(v[0]/v[1])

In order to use this new variable, we need to upgrade the equation for RelativeQuality (see
the equation’s code in paragraph 4.18 at pag. 61). In the equation replace the line:

...

v[1]=V("AverageRW");

...

with

...

v[1]=V("WAverageRW");

...

Compile and run the LSD model program (Model/Run). Load the configuration and move the
browser in AggregateObj. Here add the new variable WAverageRW, and set its options so that
to save it for post-simulation analysis. We are now ready to run the simulation, but the an error
message will soon appear.

4.22 Dead-lock errors - Spotting and fixing temporal incon-
sistencies

The simulation aborts immediately. Writing simulation models, like any computer program, is
prone to two types of errors: firstly, we may write grammar errors. These errors, that you are likely
to have already experienced, are mistakes in the code such that the compiler cannot understand the
commands in the code, since they do not respect the grammar of the language used. Typically, you
can mistype a command or forget the semi-colon at the end of a line. These errors are recognized
at compile time, and they need to be fixed before the program is created.

The second type of errors concerns grammatically correct code, that the compiler can success-
fully interpret, but that implements illogical or inconsistent commands. This is what happened
to our upgraded model: the LSD model program has been created, because the commands were
correct, but during the actual simulation run LSD realised that there is an inconsistency. Let’s see
firstly what a dead lock error is, then we analyse the information provided by LSD to find the cause
of the error, and, finally, we will fix our model.

The dead lock errors are cycles of computations that the computer is not able to resolve. They
are the equivalent of asking a computer to solve the chicken-egg problem by brute computational
force, and the machine applying its typical mechanical attitude of actually trying.

As an example of a dead-lock error, consider a set of three variables with their equations, each
using one of the other variables:

Xt = fX(Yt)

66

4.22 Dead-lock errors - Spotting and fixing temporal inconsistencies asda 67

Yt = fY (Zt)

Zt = fZ(Xt)

One of the basic concepts in computing is that of subroutine. They are parts of code that
execute specific operations, for example computing a number as elaboration of other values. If a
subroutine requires a value which is still not available, the program interrupts its current operation
(remembering at which point it was interrupted and any intermediate result obtained so far) and
executes the subroutine for the requested value. When the subroutine has finished, the initial
operations can continue using the result provided by the subroutine.

Let’s see how this work in the example above. Suppose to start trying to compute firstly Xt

(though the same applies starting from Y or Z). The equation for X starts to be executed, but its
complete computation requires the value of Y . Therefore, the computer interrupts the execution
of fX and begins computing the equation for Yt. Also fY cannot be completed because it requires
a value not yet available, Zt, and therefore also the equation fY is interrupted and the computer
begins to compute Zt using its equation fZ . But one of the values to be used in this latest equation
is Xt, whose equation, though initiated, still did not provide the value for Xt. Therefore, following
blindly the rules of computing, the processor would start to compute the equation fX , which is
interrupted in order to compute Yt, etc. ...

In ancient operative systems a circular set of subroutines like this used to freeze computers
because the processor initiated to compute each subroutine without being able to finish any com-
putation, and refusing to accept commands from the keyboard (therefore the name). Modern
operative systems avoid to lock computers, but the program entering in this sort of errors crashes
without any notice, making impossible for the programmer to spot the faulty lines in the code.
LSD recognizes dead locks before the operative system and interrupts the simulation providing all
the information required to fix the error.

Before continuing to analyse the LSD tool kit for fixing dead lock errors, let’s make a brief
comment on dead lock errors. Simulation programs are not mathematical but computational
logical structures, and this is nowhere clearer than in the case of dead locks. A mathematical
model can well contain a set of equations as in the example above. In mathematical terms those
set of equation is interpreted as: the set of value(s) of X, Y and Z such that the three equations fX ,
fY and fZ are all satisfied. In other terms, mathematics interpret a set of equations as conditions,
or constraints, to be satisfied, without any indications on how the variables may be computed.

On the contrary, in computational terms a set of equations is interpreted as instructions to be
executed, computing the values on the right-hand side of the equation to be stored in the variable
indicated on the left-hand side, without any prior indication of the properties of the outcomes of
those computations

The difference between computing and mathematics consists in the symbol “=”. In mathematics
it is the condition such that the values on both sides of the equation are identical. In computing,
instead, “=” means that the variable on the left of “=” must assume the value on the right.
Therefore, for example, in mathematics you can never write X = X + 1, since there is no number
equal to its subsequent. Instead this is perfectly legal in computing: the command assigns to X
its own value plus one. Conversely, in mathematics you may write X + Y = 2, but it makes no
sense in computing, since there is no variable on the left to which assign the value. Note that, in
programming languages, you always have two different symbols for assigning values to variables
(e.g. “=” in C++) and for testing the condition on whether two values are identical (“==” in
C++).

So, the main problem with dead lock errors is to identify the chain of equations that, calling
each other, caused the never ending cycle to occur. Let’s see the information LSD gives us to find
out what type of error is and how to fix it. They are contained in the Log window of the LSD model
program. The messages you find consist in several lines providing information on the status of the
model when the error occurred. The crucial lines are the last ones. In our case these lines are:

Level Variable Label

3 RelativeQuality

2 Sales

1 WAverageRW

67

asda 68 Implementing LSD models: Example 1

0 \LsD Simulation Manager

They indicate that the model has started the simulation (level 0). The LSD Model Manager
began the updating of the variables in the model, trying to compute the variable WAverageRW
(level 1). This computation was interrupted in order to obtain the required value for Sales, whose
execution started at level 2. But also the equation for Sales needed to be interrupted in order
to compute first the value of RelativeQuality. Up to here the system worked normally. In fact,
at any time step LSD tries to compute the new values for each and every variable in the model,
starting from the ones in the top level objects. If their equations require updated values from
variables not yet updated, then it interrupts the current computation in order to execute first the
variables required26. In programming jargon, when a subroutine, like the equation for a variable,
is interrupted in order to compute another subroutine, you say that it is “place on the stack”. The
level indexes in the Log message concern the “stack levels” at which an equation is executed.

In our case, the error is caused by the fact that the equation for variable RelativeQuality
requires the present value of WAverageRW, which cannot complete its computation. Here the
system realized that a dead lock risked to be initiated and issued the error message, blocking the
simulation.

Now we know what is the error in our model: the average quality indicator uses the value of
sales which is a function of the relative quality, which, finally, requires the weighted average quality.
Since all these variables must be computed by their respective equations before being used, the
system does not know how to solve the circularity of the commands contained in the equations’
code. It is up to us, as programmers, to find a solution. The obvious one consists in changing one
of the equations involved using a lagged value for one of the variables. The variable to choose is not
important from the computational viewpoint, but depends on the interpretation of the variables.
The most logical option, in our example, may be to change the equation for RelativeQuality
in order to make use of the past values of RandomWalk and WAverageRW. In this case, we
tell the model that the relative quality of today (time t) is a function of the relative qualities of
yesterday (t − 1), inserting a lag in the response from quality (RandomWalk) to the relative
quality.

Having understood the error, and found how to fix it, we need to change the equations’ code.
Firstly, however, we need to kill the LSD model program that, though the simulation is blocked, is
still running. The program offers four options:

• Return to LSD Browser: return to the browser as if the simulation was terminated normally.

• Analysis of Results: move to analyse the results produced so far.

• Data browse: show every copy of the objects in the model, and every element within them.

• Quit LSD model program: kill the LSD model program.

In our case we don’t have data to analyse, because the simulation crashed at the very first time
step. Also the Data browse option is not useful, since the error does not depend on the values
produced in the simulation. Therefore, we kill the program clicking on Abort and return to LMM
in order to fix the equation for RelativeQuality.

4.23 Modelling Time: changing order of LSD equations

What we need to do in order to fix our error is simply to switch the order in which the equations
are executed within a time step: first relative quality, and then average quality. It requires few
changes to the equations’ file, that we will see in a moment. Firstly, however, it is worth reasoning
on what we have discovered by means of the dead lock error, and how to go to fix it.

26Each variables is tagged with the time when it was lastly computed. Therefore, it is frequent the case that one
variable is firstly computed because requested by another equation. If, in the same time step, its value is requested
again, its equation is not re-executed, re-using the previously computed value.

68

4.23 Modelling Time: changing order of LSD equations asda 69

There are two ways to see this: a mathematician, or a modeller used to standard analytical
models, may see this as an annoying quirk required by the stupidity of computers, unable to solve
even the simplest set of linear equations. Under this view, a dead lock error, and the way to solve
it, is only a technical problem. The opposite way is to interpret the discovery of a dead lock error as
an improvement of our knowledge of the modelled phenomenon. In fact, normally people represent
to themselves a model by individual variables, and equations, neglecting the overall temporal or
logical pattern linking the variables to form the overall model. Actually, this is the very reason
for using simulations: I tell the computer how to compute X, Y, Z etc., and then observe to their
joint effect through time. The fact that a dead lock error occurred is a signal not much (and not
necessarily) that your individual equations were wrong in the first place, but that the system as a
whole was incoherent. And this is a potentially useful result: however negative, acknowledging an
error is the first step to solve it.

Most of the times, dead lock errors point to missing conceptual elements of the model, which
is well worth to analyse. For example, consider a model where a set of firms decide the quantity
to produce as a function of the market price, and the market price is a function of the quantity
produced. Besides the functional forms, the model is still not complete: I need to specify whether
firms decide firstly their production as a function of past price, or if the price is computed first as
a function of past quantities. Generally, I will obtain different results in the two cases, since they
assume different types of behaviour by consumers and producers. A dead-lock error, in this case,
shows that a missing part of the model needs to be filled. This is an example of why simulations are
a useful analytical tool: being forced to think how to implement consistently a given phenomenon,
modelers are forced to devise rigorous algorithms, and therefore to have a precise idea on how the
world really functions. And one of the undeniable properties of real-world events is that they take
place in real time, and therefore the timing of the simulated events have a relevance, as much as
the timing of real-world events is important. In practice, finding a solution to a dead-lock error is
not a difficult problem, considering how real-world examples actually function.

In our case we can easily solve our the problem by modifying one of the three equations con-
cerned with the error, WAverageRW, Sales or RelativeQuality. The change should consists
in replacing the request for the present-time value of the variables V(...) with the lagged value
VL(...,1)27.

In such a simple model the different alternatives are likely to have similar effects. To minimise
the changes to the present version of the model, we assume that the average quality is computed
using past sales, instead of present time values.

Note that the change modifies the ordering of execution of the variables within a time step,
but we need not (and, actually, can not) express this change explicitly, since the LSD Simulation
Manager will take care of modifying the order of execution as necessary.

The only modification we need to do to the model consists in modifying the code expressing
equation for WAverageRW :

EQUATION("WAverageRW")

/*

Weighted average value of all the RandomWalk

values using Sales as weights

*/

v[0]=0; v[1]=0;

CYCLE(cur, "MyObj")

{

v[3]=VLS(cur,"Sales",1);

v[2]=VS(cur,"RandomWalk");

v[0]=v[0]+v[2]*v[3];

v[1]=v[1]+v[3];

}

RESULT(v[0]/v[1])

27Note that in the equation for WAverageRW we are using the values of sales from a specified object, VS(cur,
"Sales"). Obviously, in this case we should use VLS(cur, "Sales",1), requesting a lagged value from a specific
object.

69

asda 70 Implementing LSD models: Example 1

Now we can compile our model, load the configuration, and execute successfully a simulation
run.

4.24 Interpreting results

The simulation run, though safely executed, has produced a wild series of values, in which we can
be easily get lost. Let’s try to understand what has happened, by running a simulation without
random variability.

In essence, our model contains random elements (RandomWalk) and a distributional element
assigning Sales. Let’s see how the distributional element work, by transforming the RandomWalk
variables so that they remain constant throughout a simulation run and having a different values
for each firm.

To do this we can simply edit the structure of the model editing the elements RandomWalk
and turning them into parameters, assigning to them different values. A second way is to maintain
RandomWalk as variables and squeezing the limits of the random oscillations to zero, that is,
assigning 0 to minimum and maximum. This would produce a constant value of 0 for all the
X1 variables at any time step:

X1t = minimum+ (maximum−minimum) ∗Xt = 0 + (0− 0) ∗Xt = 0

and therefore leaving unchanged RandomWalk at the initial value for any time step:

RandomWalkt = RandomWalkt−1 + 0 = RandomWalk0

Move the LSD browser to show the objects MyObj. Open the initial values window (Data/Init.values)
and use the Set All for:

- minimum, setting all of them equal to 0
- maximum, setting all of them equal to 0
- RandomWalk (-1), setting all of them to increasing values starting from 1000 with step of

100
All the Sales (-1) should remain to 1000. The above settings ensures that each RandomWalk

is assigned a different value of 1000, 1100, etc. which will remain constant through a simulation
run.

Save this configuration with a different name, say sim2.lsd, in order to not overwrite the previous
one. Running a simulation you will see that an orderly pattern is clearly visible, but the eventual
distribution cannot be seen because the simulation terminates too early. Reload the configuration
(Ctrl+w) and change the simulation settings (menu Run / Sim.Settings), inserting 1000 steps as
limit instead of 100.

1 250 500 750 1000

0

2499.94

4999.88

7499.83

9999.77

Sales_1_1 Sales_1_2 Sales_1_3 Sales_1_4 Sales_1_5 Sales_1_6 Sales_1_7 Sales_1_8 Sales_1_9 Sales_1_10

Figure 4.18: Sales time sequence with constant qualities.

70

4.25 LSD Debugger asda 71

Now our model represents a group of firms of different, but constant, quality, and we are ready
to test how their sales levels are affected. Run the simulation, and then open the Analysis of Results

module. Select the sales variables and plot their time sequence values. The result should be like
the graph shown in fig. 4.18. We can see that the 10th firm gains in the end all the sales, while the
others decrease to 0. This is obvious because the 10th firm has the highest quality. The interesting
aspect of the simulation consists in the patterns of the different sales’ variables.

Suppose you want to interpret the result according to the explanation: the dynamics of sales
depend on the quality of the firms. This seems to be confirmed by the pattern of the worst firms
(always decreasing) and of the very best one (always increasing). However, the second and third
firm, at least, have their sales initially increasing and then decreasing: don’t they have the quality
constant as the others? Though the answer can easily be found logically, we can use this question
as an excuse to explore another tool of LSD: how to find detailed evidence of the micro-events
within a simulation run.

4.25 LSD Debugger

In many cases (and we may even claim the most interesting ones) we have a simulation model
producing unexpected results, difficult to justify on the basis of the equations. This happen because,
however simple may be the equations, the non-linear interactions among many elements through
time are very hard to predict, and this is the very reason for performing simulations. Obviously,
it may even be the case that our model is simply wrong, containing errors.

In both cases it is very difficult to investigate the behaviour of the model on the basis of the
time series of results alone, as they are provided by the Analysis of Results, or by a sophisticated
statistical analysis. This is because reconstructing the dynamics producing the results requires
a careful analysis of the events within a simulation run. For this reason you do not necessarily
need a lot of data, actually too much data may be as confusing as too little. What is necessary
is to access data in the appropriate way. We may even need to run a counter-factual experiment
modifying what we suspect to be a crucial value. In general, we need to “freeze” the simulated
world represented by the running model, and potentially investigate all of its elements, gaining an
understanding that is much more detailed than that available looking at the resulting series alone.
It is the same difference as having available the census data of a country at aggregate level along,
or having the chance to reach each and every person’s state: to understand how aggregate patterns
emerge you need sometimes to access micro-data.

The LSD model programs are endowed with a module that permits to interrupt a simulation
run at any moment and investigate the status of each and every element of the model, the LSD

Debugger28. Let’s see how to use the LSD debugger. Quit the Analysis of Results (Exit/Exit) and
re-load a fresh configuration (press the keys Ctrl+w).

In order to interrupt a simulation run we need to tell the model two pieces of information:
at what time step we want the interruption to occur, and, within a time step, which equation’s
computation we want to observe. That is, which equation will interrupt the simulation. To ensure
that no other variable is already to be debugged, use menu Run / Remove Debug Flags.

Open menu Run/Sim.Setting and write in the field Insert Debugger at: a time step, say 10.
After having pressed Ok move the LSD Browser to show the content of MyObj ; double-click on
RelativeQuality and check on the option Debug: ... in the resulting option window for this
variable, and, finally, press Continue. Now we can run the simulation as usual with Run/Run. The
LSD model program will compute the first 10 steps, and then it will stop as soon as the first copy
of a variable Sales complete its equation.

Run the simulation, and the model should interrupt showing the window reported in figure
4.19.

This window provides a large number of possibilities to observe the model and, if necessary,
also to modify it in the middle of the simulation run. We will see only a few of these now; see the

28The name is due to the use of this function for spotting errors, that is bugs, in programs, when they generate
unexpected results. In this case it is necessary to run the program step-by-step to reproduce and identify the sources
of the error. In a simulation program, a “bug” may be either an error or simply an unexpected result.

71

asda 72 Implementing LSD models: Example 1

Figure 4.19: Debugger set on the variable RelativeQuality at the 10th time step.

menu Help/LSD Debugger Help for a complete presentation for this interface. Let’s see firstly the
items contained in the page.

The top part of the figure, the header of the debugger, reports the label of the variable just
computed when the simulation was interrupted (RelativeQuality), the value resulting from its
computation (-0.353671), and the time step of the simulation (10).

Below the header there is a row of buttons controlling the simulation run. These buttons operate
and provide information on the dynamics of the simulation. For example, button Run would tell
the model to continue the simulation until the end, Quit aborts the simulation at current time step;
Step will continue the simulation until the next variable marked to be debugged is updated. For
the moment don’t use any of these buttons.

The second row of buttons allows users to browse through the different copies of the objects
forming the model. For example, try to press the key “u” (for “Up”) and “d” (for “down”)29; you
can also use the arrows to move around the model.

Below the buttons you find the indication on the specific copy of the model you are observing.
Contrary to the LSD browser normally used, the debugger browser does not show only the generic
content of an object type, but shows the actual content of a specific copy of an object. Hence,
you are shown the ordinal number of the specific copy, including the ancestors of the object up
to Root. Moving “right” across the set of MyObj objects you will see that their ordinal number
changes.

Below the buttons you observe the how sequence of ancestors of the object currently shown
(which is indicated along the label Object instance:). Note that each element is indicated as the
ordinal number of the object within its group.

The remaining part of the window shows the actual content of the object: the list of all the
variables and parameters contained in the object, indicating their current value. Note that the
values of variables are tagged with a number, printed in red. This number is the time step when
the variable has been lastly updated. Typically, when the debugger interrupts a simulation run in
the middle of a time step, some of the variables have already been computed, while others still did
not receive their newly computed value (e.g. variable Sales in the figure). Comparing the value
LastUpdate for a variable with the current time step of the simulation shown in the debugger’s
header you can see whether the variable has been already computed or not. In our case, we
interrupted the simulation when the RelativeQuality of the first MyObj has been completed.
Therefore, for example, we will have that copies of Sales in the other MyObj will not be updated
for the current time step, as well as all the RelativeQuality ’s variables.

So, now we can answer our question: why some copy of Sales decrease while others, non-
optimal, still increase their level? Let’s explore the set of objects MyObj. We see that all the values
for RelativeQuality (concerning time step 9) are negative, for the copies from 1 to 6 included.
We know, from the equations, that a negative value is caused by RandomWalk smaller than

29The underlined letters in the buttons’ text indicate the keys available as alternative to click on the buttons.

72

4.25 LSD Debugger asda 73

WAverageRW. Given our set up (minimum and maximum set to 0), variables RandomWalk
never change. Actually, it is WAverageRW that does change. At time 10 this variable has the
value of 1547.2, as we can observe moving the debugger in AggregateObj pressing Up. The change
is due to the changes in the weights of the average: while higher quality firm’s sales increases, so
does its weight in the average, pushing up the value of WAverageRW. Therefore, the values of
quality for some firms was above average in the beginning, and therefore their sales level increased.
But later WAverageRW increased so to overcome the levels of quality for each firm but the 10th,
so that eventually all these firms have decreasing levels of sales.

Once a property of the model has been identified it is necessary to find the a suitable format
to describe it. While the modeller has a deep knowledge of the model (and of the modeling tool),
it is necessary to find a synthetic and clear format to communicate the relevant knowledge to an
audience that does not have available the same tools and skills. Let’s see how to prepare a clear
presentation to answer this question.

Complete the simulation run, clicking on the button Run and open the Analysis of Results.
As we mentioned before we wanted to understand why sales dynamics of some firms are not
monotonous, by change sign even though their qualities are constant.

Let’s consider the case of the 9th series (the next-to-best) which increases its sales until about
time step 60, and then decreases it. We can produce a graph containing its sales and quality, as
well as the weighted average quality. This graph shows that the change of direction of sales for
this firm takes place exactly when the firms’ quality crosses the average quality.

Figure 4.20: Options for the Analysis of Result creating a graph using a restricted period of the simulation
and using two different scales, with the second scale being used for the third series.

To generate this graph we need to make use some of the features of the Analysis of Result win-
dow. Firstly, moves in the Series Selected box the series for the quality of the firm (RandomWalk
with the tag 1 9) and the average quality (WAverageRW). Finally, add also the sales for the
same firm (Sales, with tag 1 9). We need then to plot a graph restricted to the first 100 time steps,
and using two different scales: one for the two qualities and one for the sales. These options can
be obtained using the checkboxes and entries in the middle of the Analysis of the Result window,
as indicated in figure 4.20

Once the graph window has been produced we can edit it by adding, removing or editing labels.
To add a label keep the shift key pressed and click on the graph window. Type into the resulting
entry the text desired and confirm. To edit an existing window click on it with the right button of
the mouse, and edit the text or format. To remove a label do as for editing it and assign an empty
label. See the help menu for further details.

The resulting graph is reported in figure 4.21. Note that the graph windows can be saved as
encapsulated postscript file for use in any word-processor (again, see the help on details).

The model we developed so far is driven by the functional form we impose on the variable

73

asda 74 Implementing LSD models: Example 1

1 25 50 75 100

1450

1651.5

1853

(1000)

(1761.1)

(2522.2)

Sales(9) Average Quality

Quality(9)

Time

Quality
(Sales)

Figure 4.21: Graph produced with the options as in figure 4.20 and edited by changing labels.

Sales. This equation represents implicitly the behaviour of the consumer, who are supposed to
act in such a way to generate the prescribed dynamics of sales.

This modeling approach is generally used for mathematical models, since it can exploit conve-
nient mathematical properties of the chosen function. But it also introduces strong rigidities on the
type of models that can be generated. In our case, it is impossible, for example, modify the model
to obtain a sales level positive for all firms. The model we built is, essentially, a model explaining
the pattern to a monopoly, not a model of competition. For such purposes we need to devise a
different model, where consumers are explicitly represented and their different preferences used to
generate sales levels which are persistently differentiated, but not converging to a monopoly.

We will need to “deepen” the model, replacing an imposed dynamics (our equation for sales
dynamics) with a derived dynamics, where sales are the result of consumers’ behaviour. The
resulting model will be more difficult to deal with mathematically, but will be more flexible in the
type of representation. From the programming viewpoint we may continue to update the element
of the model we have already generated, but it is more convenient to start a new model from the
scratch to avoid confusion caused by mismatched labels or spending time re-naming many elements.

74

Chapter 5

Implementing LSD Models:
Example 2

This tutorial will skip on details of the elementary operations and will focus on relatively advanced
features of LSD coding: use of functions; manual control of precedence; optimization of code.

5.1 Model Content

The model implemented in this section is the computable version of a model originally1implemented
as a standard dynamic model, where a system of differential equations is “solved” providing asymp-
totic solutions under very strict assumptions. We will reproduce the same results by means of a
computational model, which automatically allows also the possibility to observe the path leading
to the limit values and provides the basis for infinite extensions.

The model addresses the issue of consumers who are not able to evaluate the quality of prod-
ucts they buy, neither before nor after the purchase, because of undetermined reasons. The only
information available to consumer is that their product needs replacement every once in a while
because it “breaks down”, i.e. for some reason does not provide any longer its purported services.
The actual quality of products, unknown to consumers, is the probability that a given product
will break down at any unit of time. Consider ProdUsed a variable indicating which product a
consumer is using. Its dynamic can be represented as follows:

ProdUsedt =

{
ProdUsedt−1 , if isBroken(ProdUsedt−1) = 0
Purchase , if isBroken(ProdUsedt−1) = 1

where the expression isBroken(i) indicates a stochastic event based on the probability that
product i breaks down. This may be expressed as:

isBroken(i) =

{
1 , with probability BDi

0 , with probability 1−BDi

where BD i indicate the quality of product i, hidden to consumers.
The model is completed by defining the action of consumers activated when they need to

replace their broken product, defined above as Purchase. The model assumes that consumers
rely on the only information available to them: the relative popularity of different products. The
model assumes therefore that products are branded and consumers are able to recognized the brand
of products, though not able to compare quality levels across different brands. Hence, they tend
to choose more popular products with higher probability than those with lower market shares.

Crucially, the model assumes differences in trust among consumers in respect of the reliability
of the market shares to correlate with products’ qualities. Markets where consumers have little
faith that market shares are a good indicator of products’ quality will tend to choose with more

1Smallwood and Conlisk, 1979, “Product Quality in Markets where Consumers are Imperfectly Informed”, Quar-
terly Journal of Economics, 93-1.

75

asda 76 Implementing LSD Models: Example 2

even probability any brand. On the contrary, markets where consumers trust market shares as a
reliable indicator will concentrate their purchase only on the most popular.

The model implements this assumption by assuming that the probability of choosing any given
product i is the following:

Prob(Purchase = i) =
msai∑N
j=1ms

a
j

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

a
ms

Figure 5.1: Probabilities obtained by biasing the market share of one product in respect of different values
for a.

The relation between market shares and probabilities depend on the parameter a. The higher a
the more extreme are differences between probabilities, while lower a indicates flatter probabilities.
Figure 6.3 shows a visual representation of the effect of a. The graph reports the probability
resulting for a hypothetical option among two alternatives for different values of the market share of
the option and of a. Increasing values of a clearly show the increasing polarization of probabilities.
At the two extreme we have that for a = 0 the probability is uniformly distributed irrespective
of the market share. On the contrary, for high values of a the product enjoying even minimal
advantage obtains a probability of being chosen virtually to 100%.

Given the two rules on the “technology” (when the product breaks down) and on the consumers’
behaviour, the model explores the question on whether the market as a whole is able to identify
the best product (least probability of breaking down), even though no single participant to the
market owns such information.

In the following we are going to implement a LSD implementation of the model able to answer
this question, choosing a version able to illustrate a few advanced features of the system.

5.2 Model structure and core equations

The result produced by an equation in LSD can (and frequently does) depend on the copy of the
object containing the element. That is, the very same code of an equation associated to an element
in, say, Firm may produce a different result if moved to Market. This is due to the fact that
LSD fills automatically many details left un-specified in the code by inducing the intention of the
modeler from the position of the variable in the model structure. Relying on automatic rules not
only requires far simpler code from modelers, but it is also central in the possibility of modifying
existing models and re-using code in different models, since the system automatically re-arrange
the code to changing conditions.

Because of the importance of the model object structure, let’s start by defining the objects into
which we will place our computational content. The structure is pretty straightforward: we define

76

5.2 Model structure and core equations asda 77

an object Market containing a Supply and Demand side. In turn, Supply contains several
objects Firm and Demand several objects Consumer. The structure of the model is reported
in figure 6.1.

Figure 5.2: Object structure of an model. Object Market contains Supply and Demand, which, respec-
tively, contain Firm and Consumer.

Let’s define a “brand” for each firm, that is a way to identify a product from others. To do
so we can simply define a parameter in the objects Firm initialize with a different value (say 1,
2, etc.) for each copy. Insert parameter idFirm in the object Firm and assign as initial values
increasing integers starting from 1 (use Set All and option Increasing, using 1 as starting point
and 1 as step). Also, assign to the same objects the “quality” of products to each firm, that is
the parameter indicating the probability of breaking down for users of each firm’s products. Insert
parameter BD and assign 0.1 to the first firm, and then increase the value by 0.01 to each following
firms (as beforem Set All and Increasing, using starting value 0.1 and increasing by step 0.01).

Let’s start by writing the code for the equation concerning the product used by consumers.
The variable will indicate at time t the id of the product used by the consumer. Its equation can
be expressed as follows

EQUATION("ProdUsed")

/*

Determine the product used by the consumer

*/

v[0]=V("IsBroken"); //breaks ?

if(v[0]==1)

v[1]=V("Purchase"); //yes, buy a new product

else

v[1]=VL("ProdUsed",1); //no, keep on using the previous one

RESULT(v[1])

The code is pretty straightforward, but a few comments may be useful. Firstly, we avoided
tackling the main problem by delegating element IsBroken to produce the crucial information
on whether the product breaks down. Once this is resolved, the equation is a mere conditional
statement. Note that the logical condition “is equal” is expressed with the double equal sign == in
C++. If the condition is true the first line is executed and the else command is skipped, and the
opposite in case the condition is not verified.

Similarly, if a new product must be chosen the equation relies on another element of the model
to make the necessary operation, Purchase, which will have to return the idFirm of a newly
purchased product. Alternatively, if the product is not broken, the variable ProdUser will continue
to have the value as at the previous time step.

77

asda 78 Implementing LSD Models: Example 2

5.3 Finding model data in LSD equations (equation for Is-
Broken)

Let’s see the code for the variable IsBroken whose main problem concerns the possibility to access
the appropriate data from the model. We start by writing an intuitive, but wrong, version for the
equation, and then, fixing the errors, we will eventually reach a correct version. The incremental
versions of the model will provide the excuse to discuss the different ways modeler can control the
data used by equations for their computation, that is, which copy if a given element, among many,
is used within the code for an equation. The system provides, by default, a certain copy depending
on the location of the element associated to the equation. However, the user can overrule the
default system.

The computational content of the equation for IsBroken is not very complex. The difficult
part concerns the access to the necessary data. Consider the following formulation:

EQUATION("IsBroken")

/*

Check if the product is broken. INCREMENTAL VERSION 1.0

*/

v[2]=V("BD"); //should be the b.down probability

if(RND<v[2])

v[1]=1; //product broken

else

v[1]=0; //product not broken

}

RESULT(v[1])

Provided that the local variable v[2] contains the probability of breaking down, the code is pretty
trivial. The conditional statement if(...) emulates a random event. The LSD function RND produces a
random value uniformly distributed in [0,1] every time it is executed. Hence, for example, if v[2]=0.1, the
condition RND<v[2] will be true or false 10% and 90% of times it is executed, respectively. In the first case
it returns 1, and in the second 0, providing the required result for the equation of ProdUsed.

5.3.1 Automatic data retrieving

The code for the equation, however simple, cannot produce the result we expect because the system is
not able to produce the correct value of BD in the equation. In fact, without any specifier (i.e. using
only V(...)), the system decides on its own where to retrieve elements requested during a simulation run.
Consider the structure of object we built for our model (figure 6.1); whatever object you decide to place
variable IsBroken in, the result will not be the one desired.

To understand why, we need to consider how LSD retrieves automatically the data within the equations.
Consider the equation for a variable, say Y. When the code encounters a command requiring data from
the model, e.g. V("X"), it starts searching an element of the model with label X in the same copy object
containing the copy of variable Y under computation. This object is referred to by a pointer, p, that,
contrary to cur, cannot be assigned by modelers but it is set by the system for each equation. If the object
contains the element, i.e. if the object containing Y contains also X, the system returns the value from
this copy. Alternatively, if the object containing Y does not contain element X, the system starts a search
scanning potentially all objects in the model, according to a precise order. Below is the strategy adopted
to automatically search elements necessary for an equation.

1. Search in the object p.

2. Search in all objects descending from p.

3. Search in the object containing p.

The search routine is recursive, that is, replicates the same strategy in every object visited, with the
obvious control that it does never pass twice in the the same object. The first object found during the
search containing X the search stops and the value of the element is returned.

78

5.3 Finding model data in LSD equations (equation for IsBroken) asda 79

5.3.2 Manual data retrieving

Considering that parameters BD are contained in objects Firm, and given the search routine, wherever
you placed IsBroken the result of the equation as written above will be wrong, that is, it will not produce
the intended result. The problem is that the copy of parameter BD to be used cannot be automatically
delivered by the automatic system, but needs to be the one indicated by the content of the past value of
ProdUsed of the object consumer using this code. In other word, the same code for IsBroken used by
the same copy of object consumer will need to deliver a different copy of BD ; this means that the code
needs to specify “manually” how to retrieve that copy.

The following equation shows how the modeler can by-pass the LSD automatic retrieval system and find
a value for a specified copy of an element, in our case a specific firm.

EQUATION("IsBroken")

/*

Check if the product is broken. INCREMENTAL VERSION 2.0

*/

v[0]=VL("ProdUsed",1);

cur=SEARCH_CND("idFirm",v[0]);

v[2]=VS(cur, "BD");

if(RND<v[2])

v[1]=1; //product broken

else

v[1]=0; //product not broken

RESULT(v[1])

Let’s see firstly the new command introduced in this code. The first line of the equation loads in v[0]

the unique identifier of the product owned by the consumer in the previous time step, ProdUsed with
one lag. Notice that IsBroken is computed during the computation of ProdUsed, thus any line in the
equation such as v[0]=V("ProdUsed"); would cause a dead-lock error; but here we are asking for the past
value of a variable under computation, and this value can be obtained without triggering the computation
of the equation.

The second line contains the new command, SEARCH CND("Label",val). In general, this command
implements a search for the element called Label following a search strategy identical to the one discussed
before for the automatic retrieval system. However, the search does not stop as soon as on copy of the
element is found, but continues until the copy of the element has a value exactly equal to val. If the system
does not contain any element Label with value val, then the simulation stops issuing an error. Conversely,
if one such an element is found, the command returns the object containing this element.

Besides the new command, the code of the equation is straightforward. The local pointer cur will
contains the copy of Firm whose parameter idFirm equals the past value of ProdUsed of the consumer.
The copy of the BD parameter will be the one contained by the selected Firm, and hence the random
event will be computed as before.

5.3.3 Functions vs. Variables

This implementation 2.0 of the equation works provided a crucial condition is respected. The condition is
that the line v[0]=VL("ProdUsed",1); is able to return the (past) value from the copy of the variable of
the consumer we are computing. To ensure this we need to locate IsBroken within the same object as
ProdUser, i.e. in object Consumer. This choice is not, however, particularly elegant. We likely wish to
have a large number of consumers, and the least number of elements we place there the smaller will be the
memory requirements. Besides, the simulation needs not to store the information produced by IsBroken,
since we are only interested in which product a consumer is using. Hence, we may consider to place the
element IsBroken somewhere else, for example in object Supply, so that every consumer may exploit its
code, but not own an individual copy. This choice, computationally more efficient, generates however two
problems.

The first problem derives from the choice of having a single element IsBroken and many variables
ProdUsed asking its value. This implies that the equation for IsBroken needs to be re-computed several
times at each time step. In fact, suppose that the first consumer uses IsBroken, adopting the probability
of breaking down of its currently owned product. At the same time step, the second consumer will need to
re-compute the same code. But LSD prevents variables to re-execute the code for their equation twice in the
same time step. Hence, the result provided by the first use of IsBroken will be passed to all consumers,
causing the wrong result that all consumers will have their product broken, or not broken, at every time
step. To avoid this result we need to define IsBroken not as a LSD variable, but as a function. In LSD

79

asda 80 Implementing LSD Models: Example 2

functions are not constrained to be computed only once at every time step and to return the same value
without recomputing the equation every time they are asked so in the same time step. On the contrary,
functions have their equation re-computed again and again an element of the model (that is, an equation)
requires their value, which is exactly what we need here. Nota that it is possible also to ask for lagged
value of a function, such as, e.g., in v[0]=VL("IsBroken",1);, though the meaning is different in respect
of lagged variables. When asked for lagged values of functions the system does not compute their equation,
but returns the value computed at the latest execution of the equations’ code, independently from the time
step in which it had been computed.

5.3.4 Accessing the calling object

The second problem is that placing the element IsBroken in an object different from consumers, we cannot
ensure that the very first line works properly. In fact, if the function is located in Supply, or anywhere else
but consumer, the copy of ProdUsed in the first line is not determined, and the automatic data retrieving
is almost certain to fail to produce the correct value. We need to ensure that the copy of the ProdUsed
used in IsBroken comes from the same copy of consumer that is forcing the computation. This result
is not possible by relying on the automatic data retrieval, because this will always return the first copy
found. Nor it is possible to use SEARCH CND() because we do not have an identifier for consumers. So, we
need to use a third mechanism available to identify a specific element among many copies.

EQUATION("IsBroken")

/*

Check if the product is broken. INCREMENTAL VERSION 3.0

*/

v[0]=VLS(c,"ProdUsed",1);

cur=SEARCH_CND("idFirm",v[0]);

v[2]=VS(cur, "BD");

if(RND<v[2])

v[1]=1; //product broken

else

v[1]=0; //product not broken

RESULT(v[1])

The difference with the previous version is that the first line does not ask a generic copy of ProdUsed ;
rather it specifies where the element must be searched in. Note the grammar of the usual command V(),
which in this case it becomes VLS(...) combining both the modifier for lags as in VL(...) and for specific
objects VS(...). The implementation uses the pointer c, which is a system-set pointer (as for p), indicating
the object of the element whose equation requested the current equation to be computed (the name derives
for the calling object). In our case, the variables ProdUsed trigger the computation for IsBroken, so
any time the equation is computed, the pointer c will indicate the consumer containing ProdUsed whose
equation caused the computation of IsBroken. Using the system-set object c is almost always restricted
to functions, because they are always executed on request by other equations, and therefore there is always
an object calling their equations. On the contrary, variables may be computed also because of the mere
need to update their value, not because requested by other equations. In this case the pointer c is not set,
and its use in the equation will cause an error.

5.3.5 Accessing a randomly chosen object

We know that consumers choose a novel product (when they need to buy one) with probabilities propor-
tional to the normalized value of the formula msa. So, we need to produce the equation for this variable,
that we may call Visibility.

EQUATION("Visibility")

/*

Visibility of the firm used by consumers

when purchasing a product

*/

v[0]=VL("ms",1);

v[1]=V("a");

v[2]=pow(v[0],v[1]);

RESULT(v[2])

80

5.4 Using parameters as “passive” variables asda 81

The only remarkable aspect of this equation is that you need to use past market shares, because this
variable is used by consumers to make decisions that collectively will allow to compute present-time market
shares. Using the value of mst to compute a variable necessary to compute itself will obviously produce
a dead-lock. Also, note the grammar for the power function, which one of the mathematical expressions
available in C++ and inherited in LSD.

The equation for Purchase uses this value to pick a randomly chosen firm and return its idFirm.
The logical operations for random choices are rather complex: compute the number of alternatives; assign
probabilities; draw a random value; etc. However, it is so frequently used that LSD provides a single line
command performing all necessary operations on the basis of the the information provided by the modeler.
Thus, the code for Purchase is very small.

EQUATION("Purchase")

/*

INCREMENTAL VERSION 1.0

Make a purchase for the calling object (supposedly a consumer).

RNDDRAW("Obj", "Label") is a Lsd function choosing randomly an

object called "Obj" probability equal to "Label".

*/

cur=RNDDRAW("Firm","Visibility");

v[0]=VS(cur,"IdFirm");

RESULT(v[0])

The LSD command RNDDRW("Obj", "Label") can be used only in the equations for elements contained
in objects up in the hierarchy that contain as descendants the group of objects to choose, Obj. The element
Label refers to the elements whose (normalized) values must be used as probabilities. The command returns
the pointer to the chosen object which, in our case, provides the id of the firm to be used as result of the
equation. Note that the command RNDDRW() automatically normalizes the values used as probabilities so
that, as in our case, the sum of Visibility ’s is not, in general, 1.

Purchase needs to be located in an object containing the firms, so will be located in Supply. Moreover,
the code of purchase serves all consumers, and needs to be re-computed every time a consumer needs to
make a purchase. Hence, this must be defined as a function, not a variable, otherwise once chosen a product
i for one consumer, all other consumers will choose the same product in that time step.

5.4 Using parameters as “passive” variables

We have seen that the model needs to compute the market shares of different firms. The equation for
market share is pretty trivial:

EQUATION("ms")

/*

Market shares of a firm, computed as number of consumers

using the product (NumUsers) divided by total number

of consumers (TotUsers)

*/

v[0]=V("NumUsers");

v[1]=V("TotUsers");

RESULT(v[0]/v[1])

Obviously, we expect that the variable ms will be located in objects Firm together with NumUsers,
indicating the current customer base of the firm. Variable TotUsers will instead be located in an aggregate
object, such as Supply2.

The equation for NumUsers will be expressed as the net variation of previous period value after
summing newly acquired customers and subtracting lost ones, i.e. customers owning the product of the
firm but discovered it has broken in the current time step.

EQUATION("NumUsers")

/*

Number of consumers using this product

2The code for TotUsers is not reported, assuming the reader is able to implement the code for the sum of
NumUsers.

81

asda 82 Implementing LSD Models: Example 2

Computed as NumUsers[t-1]+Sales[t]-Lost[t]

*/

v[0]=VL("NumUsers",1);

v[1]=V("Sales");

v[2]=V("Lost");

RESULT(v[0]+v[1]-v[2])

While their meaning is trivial variables Sales and Lost pose a serious problem: how can we compute
them?

In LSD variables express the changing values according to a computational algorithm, i.e. they represent
an “activity” of the object in which they are located. But in the case of these variables we do not want
to express any active computation by firm; on the contrary, they are sort of passive accounting book in
which the model actors (the consumers) will write the result of their actions. In LSD it is possible to use
variables without a specific equation, that rely on other equations to change their value. Actually, though
they are conceptually variables in the model because they change value through time, they are technically
implemented as LSD parameters, because they lack an equation. So, add the two parameters Sales and
Lost in object Firm and then we need to refine previous equations to ensure that the information required
to have Sales and Lost correctly computed in inserted.

Consider, first, the case for Lost. This variable needs to express the number of customers of a given firm
whose product broke down. Interpreting the variable as an action by the firm, this would need to write the
code to scan each and every consumer controlling whether its product broke down. This is obviously highly
inefficient, because we would need to scan all consumers for each firm. Besides, we already know whether
a consumer has its current product broken, and therefore we can piggyback on the code for IsBroken to
play two distinct roles in the model: to consumer provides the information of breaking product, and to the
firm provides the information on a consumer lost.

Consider this fourth version for IsBroken :

EQUATION("IsBroken")

/*

Check if the product is broken. INCREMENTAL VERSION 4.0

*/

v[0]=VLS(c,"ProdUsed",1);

cur=SEARCH_CND("idFirm",v[0]);

v[2]=VS(cur, "BD");

if(RND<v[2])

{

v[1]=1; //product broken

INCRS(cur,"Lost",1);

}

else

v[1]=0; //product not broken

RESULT(v[1])

The additional code contains the command INCR("Label",val) that modifies the content of an element
in the model. As for most of the LSD commands there are several variations of the command grammar; in
our case we use the INCRS(pointer, ...) version that allows to specify a given object where it should be
applied, as in VS(...).

The command is among among a few that changes the value of the element indicated by Label. The
command increases the value of the element by adding the value val to the previous value. In short, the
amended code not only provides the consumer with the information on whether its product broke down,
but also tells the firm that it had lost a customer, updating the counter of the consumers who had the
same experience.

We can use the same system for Sales. Since Purchase already gets the firm chosen by a consumer,
we may use this code to update the (passive) variable.

EQUATION("Purchase")

/*

INCREMENTAL VERSION 2.0

Make a purchase for the calling object (supposedly a consumer).

RNDDRAW("Obj", "Label") is a Lsd function choosing randomly an

object called "Obj" probability equal to "Label".

82

5.5 Manual scheduling: semaphores asda 83

*/

cur=RNDDRAW("Firm","Visibility");

INCRS(cur,"Sales",1);

v[0]=VS(cur,"idFirm");

RESULT(v[0])

5.5 Manual scheduling: semaphores

Whenever the value of one variable, say Xt, is used in one equation the modeler generally does not need
to ensure that the variable is already updated. The system ensures that X have executed its own equation
to get updated before using its value in another equation. However, this system cannot work for passive
variables, such as Sales and Lost. The system considers them as parameters, and does not attach any
time tag to their values, being constant or changing. It is the modeler then that needs to ensure that the
simulation cycle is such as to schedule all the operations involving these elements in the correct order.

If we ran the model as it is coded now the result would be disastrous. Suppose, for example, that
you initialize Sales to 0. At the first time step all firms get their copy of Sales reflecting the number of
customers who bought their product. For example, assume one firm gets its Sales equal to 100. Consider
the content of Sales at the end of second time step. These parameters have been increased by the sales in
the first step, and again increased by those in the second. Hence, Sales and Lost represent not the values
at each time step, but the cumulated values, which is clearly not what we want to implement.

This is due to the passivity of these elements, reflected in their nature as LSD parameters. The system
does not have the means to control when the parameter is modified by the equations of the model, hence
it is up to the modeler to manually construct a computational schedule ensuring that the desired values
are correctly computed.

If we want that Sales and Lost reflect the behavior of consumers at a single time step only, and not the
cumulated values from previous periods, we need to ensure that the very first operation at the beginning of
a time step consists in resetting to 0 the values of Sales and Lost. This is done by the following equation.

EQUATION("InitTrade")

/*

Ensures that Sales and Lost

are set to 0

*/

CYCLE(cur, "Firm")

{

WRITES(cur,"Sales",0);

WRITES(cur,"Lost",0);

}

RESULT(1)

The code contains a member of the command WRITE("Label",val) which search in the same object
as the computed variable the element label and replace its value with val. The version used in the code
(WRITES(...)) searches the element in the object specified by the pointer in the first field.

The element InitTrade is of no interest as far as the results of the model are concerned, as reflected
by the fact that the result value is a constant (may be any value but it is necessary to specify a number,
1 in the example). The equation is purely a service element that only prepares the stage for the passive
variables to get properly computed.

In general LSD modelers do not need to worry on the precedence of computations, that is, the schedule
of the equations of the model because the system is able to use the variables time tags to arrange a coherent
order of computation, if it exists (or issue a deadlock error message). But this is not the case when we
use passive variables. The system may execute the equation for InitTrade after consumers made their
decisions, therefore preventing firms to read the values they need. So, we need to tell the model that
InitTrade needs to be computed before any other equation. There are two alternative systems to obtain
this result.

Firstly, modelers can exploit the way LSD produces its own automatic schedule of operations, i.e. how
it design one of the possible order of execution of the model equations. The general rule is that LSD starts
trying to update the elements in the top objects of the hierarchy: first Root, then its descendants, and
so on. Hence, placing InitTrade high in the hierarchy we have a high probability that its equation is
computed before anything else. But this solution dangerous. If the very first equation executed at the
beginning of a time step requires an updated value from another variable, the system turns to compute the
latter before completing the former. Hence, even if we painstakingly control that this does cause disruption

83

asda 84 Implementing LSD Models: Example 2

in our model, we still leave the possibility that any future change to the code will overlook the need for
InitTrade to be computed early on in the schedule. So, if you produce an extended version of the model,
or one user wants to re-use the code, the priority is no longer ensured. These types of errors are particularly
nasty because the system does not issue any error: simply the results are different from what one expects.

The second solution is, contrary to the former, highly reliable and robust to changes of the model. It
consists in exploiting the automatic scheduling system by explicitly preventing the wrong precedences to
occur. That is, we can tell the system that it can proceed with a certain operation only after another one
has been completed. In our case we need to we can obtain this result by editing the equation for consumers
as follows:

EQUATION("ProdUsed")

/*

Determine the product used by the consumer

*/

V("InitTrade"); //the semaphore

v[0]=V("IsBroken"); //breaks ?

if(v[0]==1)

v[1]=V("Purchase"); //yes, buy a new product

else

v[1]=VL("ProdUsed",1); //no, keep on using the previous one

RESULT(v[1])

The code is identical to the former version but for the very first line. It asks the (useless) value of the
variable InitTrade. Obviously, it is not its value we are interested into (which is not even assigned to any
local variable). We just want to ensure that the system proceed to the following lines only after InitTrade
is computed. If the copy of ProdUsed is executed when InitTrade have not been updated at the present
time step, then the necessity to compute its value triggers its equation. Since it is a variable, any subsequent
call for its value will not trigger another computation, but the previously computed (useless) value will
be returned. In essence, InitTrade acts as a semaphore, stopping the traffic of computation until a given
equation completes its own.

Our model needs a second semaphore, again because of the presence of passive variables in the model.
While InitTrade ensures that the cumulation of data starts at each time t from 0, without carrying
erroneously data from the past time step, we need similarly to ensure that we use the computed values
for Sales and Lost only when their values are correctly computed. In fact, we use Sales in the equation
for NumUsers, and we need to avoid that a firm uses the passive variables before all consumers have
made their choices. So, we build a second semaphore, call it EndTrade, and place it in the equation for
NumUsers.

EQUATION("EndTrade")

/*

Semaphore signaling the end of

consumers activity

*/

CYCLE(cur, "Consumer")

VS(cur,"ProdUsed");

RESULT(1)

This variable, located in Demand, appears as updated to the system only if all consumers completed
their choice. Hence, we can edit the equation for NumUsers as follows in order to ensure that the levels
of Sales and Lost for the firm reflect the decisions of all consumers.

EQUATION("NumUsers")

/*

Number of consumers using this product

Computed as NumUsers[t-1]+Sales[t]-Lost[t]

*/

V("EndTrade");

v[0]=VL("NumUsers",1);

v[1]=V("Sales");

v[2]=V("Lost");

RESULT(v[0]+v[1]-v[2])

84

5.6 Initialization by code asda 85

5.6 Initialization by code

Any LSD model program is automatically endowed with interfaces allowing rather sophisticated initializa-
tions, i.e. assigning number of objects and initial values to parameters and lagged variables. However,
there are some aspects of models that are difficult, time-consuming and error prone the initialize properly.
In these cases it may be fare easier to write the code of an initialization routine assigning values to the
model element at the very start of a simulation run.

In our model we could run the model as it has been defined so far, but the initialization would be
relatively annoying. For example, and primarily, we need to ensure that the value of parameter TotUsers
is identical to the number of copies of objects Consumers, meaning that every time we change one we
need to remember to also change the other.

There are also other constraints we need to respect in the initialization. The reason is that the model is
designed to maintain a rigid coherence between data from different objects, namely consumers’ and firms’
data. That is, the values in NumUsers need to correspond to an equal values of ProdUsers showing the
identification of the firms. So, for example, if the firm with idFirm=3 has the value of NumUsers=154,
you need to ensure that in your model there are 154 consumers whose variable ProdUsers=3. The model
ensures that a coherent configuration is maintained through time, but at the very beginning it is the
initialization that needs to ensure we have a coherent condition to start from.

The manual initialization using the LSD interfaces is feasible but not practical, unless to force very
peculiar conditions (e.g. all consumers start using the same product, which will start with 100% of market
shares). Thus, we better write the code for an equation whose variable exist only at the beginning of a
simulation run and is then removed. As we will see the time necessary to write the code for a generic
equation is a fraction than those required for a single coherent configuration by manual initialization.

EQUATION("Init")

/*

Initialize the model coherently

*/

V("InitTrade");

v[0]=V("TotUsers");

cur=SEARCH("Demand");

ADDNOBJS(cur,"Consumer",v[0]-1);

CYCLE(cur, "Consumer")

{

v[1]=V("Purchase");

WRITELS(cur,"ProdUsed",v[1], t);

}

PARAMETER

RESULT(1)

The equation implements the code for a LSD variable located in Root. We already mentioned that it is
good practice not to use this object to contain elements because of the specificity of this object. However,
for the same reason Root is particularly convenient to store an initialization routine. The object Root
is the only one in a model that cannot be replicated in many copies. Moreover, the automatic update of
variables start always from Root, hence the first variable in this object will certainly be executed before
anything else.

Let’s see the code for the equation. The first line fires the semaphore so that, at the very first time
step, it is not re-computed again. At time t=1 in fact the semaphore is useless, since the values of Sales
and Lost will be empty because there were ne previous computations loading into them past values.

The second line reads the number of consumers in the model as expressed in TotUsers. The following
command (whose grammar is obvious) searches the object Demand and stores it in the pointer cur .
Then the code shows an advanced command; the line generates a number (exactly TotUsers-1) of new
copies of objects Consumer, and place them into Demand. This line obviously assumes that the model
configuration is defined as containing a single copy of object Consumer.

The subsequent cycle scans all consumers in the model and, for each of them, imposes a new value for
ProdUsed. Note that the command WRITELS(cur,"ProdUsed",v[1], t);) is used in a peculiar version.
Firstly, it needs to specify the object containing the copy of ProdUsed it needs to write onto at that round
of the cycle, hence, following the usual convention in LSD it has the modifier -S. Secondly, it also uses the
modifier -L normally used to mean lagged values. In this case, however, this indicate the time at which
the variable concerned by the command must appeared as being computed. The last field of this command
indicates that all the variables ProdUsed for consumers will show as time tag the value contained in the

85

asda 86 Implementing LSD Models: Example 2

system variable t, which is a variable controlled by LSD indicating the current time step of the simulation
run. In our case we may replace t with 1, since we know that this equation will be computed only in the
first time step and never again.

To ensure that the equation is computed only once, the last line of the equation contains a command
that affects the very element whose equation is computed. The command PARAMETER orders to the element
using the equation (which, having an equation must necessarily be either a variable or a function) to turn
itself into a parameter. By doing so, the model ensures that the same code will never be repeated again in
the time step following the first. In the rest of the simulation, the system passing through Root will find
not variable Init, but parameter Init, and therefore will not bother to search for its equation. To avoid
repeating the execution of the initializing equation is crucial, because otherwise we will have a new bunch
of consumers at each time step, which is not what it is supposed to happen.

Now the model is ready to be simulated. Complete the configuration as reported in table 5.1

Object(parent) Element(type) Initial value

Root(none) 1

Init(0)

Market (Root) 1

InitTrade(0)

EndTrade(0)

TotUsers(P) 10,000

Supply(Market) 1

IsBroken(F,0)

Purchase(F,0)

a(P) 0.2

Firm(Supply) 10

idFirm(P) 1, 2, 3, ..., 10

NumUsers(1) 0, 0, 0, ..., 0

ms(1) 0.1, 0.1, 0.1, ..., 0.1

BD(P) 0.1, 0.11, 0.12, ..., 0.19

Sales(P) 0, 0, 0, ..., 0

Lost(P) 0, 0, 0, ..., 0

Visibility(0)

Demand (Market) 1

Consumer (Demand) 1

ProdUsed(1) 0

Table 5.1: Configuration for the Smallwood and Conlisk model. First column reports the object and their
parente. Second column reports elements within the object and their type: (n) for variable with ’n’ lags;
(P) for parameters; (F,n) for functions with ’n’ past values. Last column number of objects or initial values
where necessary.

5.7 Testing models

LSD models are particularly useful because with a simple click it is possible to pass from a prototype
model to a full-scale one. For example, you the model will work equally well if you change the number of
consumers to 100,000 or millions.

In many case, in order to exploit the model, we need not much to simulate very large models, but to
compare the results from a large number of different versions of the model, i.e. models whose configuration
changes for only one option. This is similarly simple, albeit it requires a small change. If you use the
configuration suggested above and you increase the number of Markets from 1 to, say, 100, you will have
100 independent simulations running in parallel. Initializing, for example, the value of parameter a to
different values you will be able to appreciate the weird role it plays in the model.

Beware that if you increase the number of markets the initialization equation Init will not be able

to perform its function. For doing this, move the variable to Market and ensure that it is the very first

variable in that object using the command Ctrl+ArrowUP from the LSD browser.
When the configuration becomes large you will probably face time and dimensional constraints,

which may be at least partly met by opimizing the model.

86

5.8 Code optimization asda 87

5.8 Code optimization

The model we have developed can run in a few seconds when the consumers are in the range of
the thousands, but can become increasingly expensive for large dimension.

There are two main areas in which users may wish to optimize their code: reduce the memory
requirements of the model in order to accomodate large models to hardware with limited memory,
and reduce the simulation time of a given configuration. Both issues can be addressed by LSD

exploiting its underlining C++ layer, so that the simulation program produced by LSD can be
optimized to the highest levels and for all systems, including super-computing systems.

To reduce the memory requirement of a model it is possible to reduce drastically the number
of time series saved, which are the most expensive burden in terms of dimension, or to split a large
model in separate chunks to be computed sequentially.

Concerning the speed of execution there are sever ways to cut the simulation time without
making specific changes to the model. They are reviewed in the following paragraph, after which
we will discuss how to change the model content for optimization purposes.

5.8.1 Optimization running options

The first possibility to generate fast code consists in using the LMM option to compile optimize
code. See the LMM menu entry for system and model compilation options.

A given LSD model program can be run faster by reducing the number of variables saved for
post-simulation analysis. Also, having Run Time Plots reduces the speed of execution. During a
simulation run, it is possible to click on the button Fast in the Log window to avoid any refreshing
at run time, hence devoting all the computing power to the computation of the model. Finally, it
is possible to tell the system to ignore some objects as not relevant for the updating of the system.
Clicking on the label of an object when shown in the main browser of a LSD model program you
are shown the window for option (see paragraph 9.1.3). There you find the option To Compute

checked on, meaning that the system will take care of updating the variables contained in that
object and in its descendants. Checking the option off will instruct the simulation to ignore the
variables contained in that object. Note that the variables may still be computed, if triggered by
other equations. For example, suppose that you checked off the option To Compute for the objects
Consumers in the example model. The simulation will still run properly because the equation
for the variables ProdUsed are triggered by the variable EndTrade. The only limitation is that
elements from objects not marked to be computed cannot be saved for post-simulation analysis.

5.8.2 Optimizing code: hook

Besides any generic trick to optimize the execution time of C++ code, which applies also to LSD, the
specific nature of LSD models may generate computational inefficiencies that can be easily reduced.
In general, the programming strategy to reduce the time of execution of a LSD simulation is to
reduce the number of steps necessary to fetch the data used in the equations. As a rule of thumb,
any time an equation makes use of elements not stored in the same objects, and particularly when
the command SEARCH CND is used, then it is likely that there is room for optimization.

In the following we will explain how to make use of particular tricks that are generally used
only for optimization, albeit they may be useful for particularly complex models.

As a first step, generate a copy of the existing model so that your attempts will not destroy the
work done so far. Shut down any LSD model program running and, in LMM, use the Model Browser

to copy and the existing model and past it as a new one, changing the name of the directory
containing the model (see par. 8.4.1).

The target of the optimization in the model is to eliminate the use of SEARCH CND in the equation
for IsBroken. The alternative method we will use is to establish a “hard” connection between a
consumer and the object Firm it is used.

LSD provides three types of hard connections linking objects: parents; siblings; descendants.
Thus, any object is able to access to its immediate neighbours in the model structure, but requires
computationally expensive search strategies crawling the model to reach objects further away.

87

asda 88 Implementing LSD Models: Example 2

Besides the links create by the system to form the structure of the model, LSD offers also a
“free” link for each object that modelers can use to establish direct links cutting across the model
structure. This link is implemented as a pointer, evocatively called hook. Thus, in the equations
we can manipulate the hook of any object in order to establish or exploit links. Notice that objects
can be accessed in the equations as pointers. In particular, the following pointers are available to
modelers:

• pointer p is the object containing the element of the equation;

• pointer c is the object “calling” the equation, that is, containing the element whose variable
requested the computation of the present equation;

• pointer root indicating is the Root of the model;

• a number of un-assigned pointers, cur, cur1, etc. to be used in association to LSD commands
returning pointers, such as SEARCH, SEARCH CND, etc.

To access the hook of each of these objects it is necessary to use the grammar obj->hook, as, for
exampe, in p->hook or cur->hook.

For example, consider the following revised version for IsBroken.

EQUATION("IsBroken")

/*

Check if the product is broken. HOOK-based version

*/

//v[0]=VLS(c,"ProdUsed",1);

//cur=SEARCH_CND("idFirm",v[0]);

v[2]=VS(c->hook, "BD");

if(RND<v[2])

{

v[1]=1; //product broken

INCRS(c->hook,"Lost",1); //here is the hook, again

}

else

v[1]=0; //product not broken

RESULT(v[1])

The code reports the old code, commented out, as a reminder of what it is the functionality we need
to replace. Instead of searching the object with a specific idFirm at every execution, this version relies
on the existence and appropriate setting of the hook for the consumer asking the computation, which is
indicated by c because the function IsBroken is always and only requested by a consumer. So, the whole
search process is removed, relying on the fact that c->hook has the same content as the cur in the previous
version. The modeler must pay extreme attention to ensure that the implementation is correct, because
the errors in case of “broken” hooks are particularly devastating. In the best cases the simulation run
is interrupted signaling the problem. But it may also continue using the wrong firm, so that the results
produced are technically valid, hence issuing no warning, but wrong.

Note that also the updating of the passive variable (i.e. parameter) Lost is done using the hook of the
consumer to its product.

To ensure that the consumers are linked to the product they use we need to modify also the equation
for Purchase, where the consumer must be associated to the product they choose.

EQUATION("Purchase")

/*

Make a purchase for the calling object (supposedly a consumer).

RNDDRAW("Obj", "Label") is a Lsd function choosing randomly an

object called "Obj" probability equal to "Label".

*/

cur=RNDDRAW("Firm","Visibility");

INCRS(cur,"Sales",1);

v[0]=VS(cur,"idFirm");

c->hook=cur; //here is the assignment of the hook

RESULT(v[0])

88

5.8 Code optimization asda 89

The code is actually not changed. The only difference is an additional line in which the object c gets
its hook assigned to the chosen firm, an operation of negligible computational cost.

Now the model is ready to execute a generic time step of the simulation run: each consumer is hooked
to its product allowing quick access to the data of the firm, and the procedure for purchasing updates the
hook when consumers change product used. However, the simulation still has an initialization problem: at
the very start of a simulation run the hook are not set, hence we need to update the equation for Init.

5.8.3 Optimizing code: V CHEAT

At an early consideration it may appear that the problem of initialization is already solved. One may
reason that, since Purchase sets the hook for the consumer making a purchase, and the initialization uses
the Purchase, then the problem is already solved. In fact, this is not the case. To have a direct experience,
try to run the model with the two equations we made so far. It will create an error because the hook of
consumers are not set. Why is this so?

You can use the gdb debugger (see the manual for information) placing a break on the line
c->hook=cur; in the equation for Purchase. Then run the simulation; gdb will interrupt the
simulation at the first occasion in which the line indicated is executed. In the gdb console type the
command: “print *c”. After pressing enter the debugger will show you the content of the object
pointed to by c. The information from the screen should be sufficient to clarify the origin of the
error.

The problem is that when Purchase is executed because Init requires its value, in the equation
for Purchase the object referred to by c is not a consumer, but the object containing Init, that
is Market. This is the appropriate way LSD works: pass to an equation as c the object containing
the element asking for its computation. Since, in this case, the element requesting the computation
is Init, which is contained in Market, this is the object appearing as c in Purchase. However
correct, in this specific case we don’t need to use the generic system, but a peculiar one, therefore
we need a workaround.

When using the standard command V() the system reads the object containing the element
under computation (appearing as p in the equation) and assigns it to c to the called element. There
is a similar command that allows the modeler to define arbitrarily which object will appear as calling
object c in the equation for the required element, in effect cheating the system by letting it believe
that the calling element is not the actual one. The command is called V CHEAT("Label",fake c).
The command search for the element Label like a normal V(), but if the equation for Label uses
its calling object c, instead of using the true one, the system will use the fake c.

In conclusion, to fix the problem you need to cheat the equation for Purchase that when it is
called by Init, it is not Market the calling object, but one of the Consumer. This is expressed
as follows, revising the initialization equation we described aboce.

EQUATION("Init")

/*

Initialize the model coherehntly

*/

V("InitTrade");

v[0]=V("TotUsers");

cur1=SEARCH("Demand");

ADDNOBJS(cur1,"Consumer",v[0]-1);

CYCLE(cur, "Consumer")

{

v[1]=V_CHEAT("Purchase",cur); //cheating Purchase

WRITELS(cur,"ProdUsed",v[1], t);

}

PARAMETER

RESULT(1)

Now the model will run correctly, and much faster, saving about 25% of the computational time in
respect of the original implementation.

89

asda 90 Implementing LSD Models: Example 2

5.8.4 Optimizing large models: turbosearch

There are classes of models in which the search for specific objects needs to be taken frequently, and the
number of copies among which to search is very large. Typically, this is the case for models on dynamic
networks in which a large number of nodes are constantly explored to generate new links replacing old
ones.

In these cases the use of hook may speed up the use of existing links, e.g. to exchange information,
but does not affect the costs of accessing new nodes, e.g. to evaluate the creation of a new link. For these
cases LSD offers a command that decreases dramatically the time required to access a generic copy among
N , in effect transforming a O(N) problem in a O(log10(N)) (i.e., a simulation run costing 1 hour to access
elements would be reduced to less than 4 seconds

90

Chapter 6

Implementing LSD Models:
Example 2

In this section we describe a second example model using more sophisticated functionalities than in the
previous example. As before, the goal of the example is to show the use of the main operations required to
represent particular computational structures. The reader is assumed to have already followed the example
in the previous section, so that in this case the text will not describe the operations required to perform
the steps already covered, like adding an element to the model, initializing a configuration, etc.

The example model in this section will start from a general operation, and will eventually generate
the discrete version of a published model concerning the behaviour of demand for heterogeneous goods by
ill-informed consumers.

If you are working on an existing model, use LMM to generate a new model. Open menu Model/Browse

Models and in the resulting window use the menu Edit/New Model to create a new model. Call the
model Agent Based Market to be placed in directory abm. Confirm the creation and we are
ready to build a model from the scratch.

6.1 Functions

Let’s start by running the model without any equations’ code and build the structure of the model
similar to that used in the previous example, just using more sensible labels and adding a demand
side of the market. The structure of the model should be as shown in figure 6.1. Save the structure
and let’s see a new LSD function.

Let’s assume that consumers choose the different products randomly, with the probability of
choosing each firm being proportional to a firm’s parameter, call it Quality. That is, the probability
for choosing the generic firm i should be equal to pi = qi∑

j
qj

. The LSD equation for such code is:

EQUATION("Choose")

/*

Choose on of the product in the descending Firm’s objects

*/

cur=RNDDRAW("Firm","Quality");

v[0]=VS(cur,"IdFirm");

RESULT(v[0])

This equation uses the LSD function RNDDRAW(‘‘ObjLab’’, ‘‘Prob’’), which chooses randomly
one of copies of objects called ObjLab with probabilities proportional to the element Prob. This
function expects that the variable Choose is contained in an object that contains a set of objects
labelled as indicated. It sums up all their values for Prob (which must be non-negative) and
assigns to each element the probability of being chosen.

The LSD function RNDDRAW(‘‘ObjLab’’, ‘‘Prob’’) returns a pointer, that is, the copy of the
object selected, so that the equation uses cur, to store it. We have already encountered this
element before: it does for objects what the local C++ variables v[i] do for numerical values. In

91

asda 92 Implementing LSD Models: Example 2

Figure 6.1: Object structure of an model. Object Market contains Supply and Demand, which, respec-
tively, contain Firm and Consumer.

practice, it stores temporarily a specific object, so that the modeller can then operate on them.
In our case, the equation reads from the object a parameter, IdFirm, which supposedly is an
identification for firms with different values for each object Firm. This value is returned by the
equation.

The code for this equation is a rather simple and straightforward representation for the con-
sumers’ behaviour. However, we have a problem. In fact, comparing the code for the equation
and the object structure we defined before, it is not obvious where the variable Choose should
be located. In fact, it clearly represents the behaviour of consumers, and hence we may consider
placing it there. On the other hand, the grammar of the equation requires the variable to be placed
on an object containing the firms, which is not the case of the objects Consumer.

This problem is one of the many cases where the very building of a model forces to think
carefully of the reality simulated. The necessity to implement a logically consistent model will
clarify how the actual system works, and will also suggest solutions to the problems of modeling
it.

We may solve our problem by storing many different sets of copies of the firms descending
from each consumer. In this case, we are implicitly representing each consumer as having her own
perception of the firms, different from that of all other consumers. This approach may be necessary
if we want to develop a model in a specific direction. But this approach implies a lot of duplication,
and, at least for now, we need not to differentiate all the consumers. We are rather representing
several identical consumers who, in turn, “go shopping” and choose one product. This is the key
to solve the modelling problem we have.

We can place Choose in the object Supply, and then placing a variable in consumer, say
ProductChosen which simply calls Choose and copies its result.

EQUATION("ProductChosen")

/*

Product used by the consumer

*/

v[0]=V("Choose");

RESULT(v[0])

In this way we have both requirements satisfied. The consumers’ variable ProductChosen will

92

6.2 Analysis of Results: Histograms asda 93

contain the identification of the firm that sold her the product, and Choose can be placed within
Supply, being able to “see” all the descending firms. This way manages to represents formally in
the model the existence of many, independent consumers, each of them exploiting the “shopping”
method, located where all firms are accessible. But this model still cannot run as intended, if
we don’t pay attention to a serious potential error. Before discussing this, however, we’d better
construct the full model configuration.

Compile this LSD model program and initialize the configuration with 10 firms and 1,000 con-
sumers. Insert variable ProductChosen in Consumers and parameter Quality in Firm. Ini-
tialize parameters Quality with increasing values from 10 to 19. Now we can discuss Choose ;
we know it should be located in Supply, providing each consumer with a product id, which will
be stored in variable ProductChosen. But Choose cannot be defined as a variable. In fact,
variables in a discrete difference equation models are labels associated to a single value within each
time step, and we know that the LSD model manager ensures that the code for the equation of a
variable is computed once, and only once, for each t. If Choose were defined as a variable, at a
time step it would execute its code once, and the resulting value (the id of the chosen firm), would
be returned to each consumer. But this is not what we meant: we designed the model to have the
code for Choose be re-executed every time a consumer needs to buy a product, many times within
the same time step. On the other hand, Choose is not a variable that we may be interested to
observe, for example plotting its time series result: its meaning is to serve consumers, not to take
independently values.

LSD allows to define other numerical elements, besides variables and parameters. They are called
functions: labels associated to a piece of code, much like variables, but that are not constrained
to be computed once at every time step. The code for a function is executed only, and every time,
the code for an equation in the model requests its value. This is the nature of Choose, which is a
sort of “extension” of the variables ProductChosen ; the latter must be computed only once, but
the former needs to re-execute its code every time its value is requested. Note also that LSD does
not compute the code for a function unless it is requested, differently from variables.

Place in Supply the function Choose, using menu Model/Add a function. Now we can run the
model. We can expect firms with higher quality selling more than firms with lower quality. But
how can express this results?

6.2 Analysis of Results: Histograms

In this paragraph we explore one of the features of the Analysis of Results, motivated by the little
information produced by the model so far. Later we will develop the model so to generate more
sensible and clearer results, so, uninterested readers, may skip this paragraph.

Our model is pretty basic, containing only one variable and its “extension” as a function. This
variable being the only result, mark it to be saved, run the simulation and open the Analysis of
Result window. We will have the 1,000 series of the ProductChosen variables available, but they
are of not much use, since they assume only integer values between 1 and 10. If we tried to plot
the time series of one of these variables we will be shown a line jumping at different integers for
each time step, indicating the id of the product chosen by that consumer for the time step. What
we can do, however, is to count the different values assumed by the variable through time. Select
one variable and click on Histograms. A new window will ask the number of classes to use; type in
10 (since there are 10 values we are interested into, the id of the existing firms).

The resulting window as contains as many columns have been requested, 10 in our case. The
horizontal axis refers to the variable measured, in our case the integers from 1 to 10. The height
of the columns refer to the frequency by which values were registered. We can expect that higher
values, referring to the id of higher quality firms, should be more frequent than lower id’s.

The histograms are formed in the following way. The system computes the range of variability
of the series considered; in our case it ranges from 1 to 10 (unless one of the extreme is never
reached, but this is highly unlikely). This range is then divided in evenly spaced sub-ranges, whose
number is decided by the user (we asked for 10). Then, the series is scanned again and system
counts how many times the variable values fall into each of the sub-ranges, or classes, defined.
Such values are then used for the height of the columns. Note that moving the mouse over one of

93

asda 94 Implementing LSD Models: Example 2

the classes shows, in the lower left corner of the window, information about the class.

However, we have considered the results of only one consumer, over 100 periods, therefore it is
likely to produce high random variability. Try to generate histograms for the same variable using
only two classes. Doing this you group together all the results in the first half of the range. Notice
that the lowest value of the vertical axis is automatically set on the frequency of least frequent
class, so that there will be at least one “empty” class. Users can change this option removing the
automatic vertical scaling, and using any minimum value.

Time series histograms can be generated for only one variable. A normally more sensible use
of histograms is to consider a large set of series and compute the frequency at a given time step,
that is, making a cross-section analysis. Remove the series you were using, and select all of them.
Use the “batch selection” system by clicking with the right button of the mouse on the series to
speed-up the process. Change the option on the lower right part of the window from Time Series

to Cross Section, and press the Histograms button.

Now you are requested two types of information. One, as before, concern the number of classes
to use; type in 10 in the second entry. The other concern which time step should be considered.
By default the system suggests the latest time step available, 100 in our case, and you can leave
this value.

The resulting graph will contain the frequencies computed at the indicated time step computed
over all the variables considered. The larger sample use is now more likely to produce a represen-
tation to the expected results: firms with higher id’s (i.e. those with better quality) have higher
frequency than those with lower id’s.

Though these results confirm the proper functioning of the model, we may want to extend the
model to express more clearly this result, besides making it more interesting.

6.3 LSD equations: the calling object c

An obvious extension of the model consists in implementing a variable to compute the number
of customers for each firm. The most straightforward code for such a variable consists in having
firms scanning all the consumers and counting how many of them have the consumers’ variable
ProductChosen identical to the firm’s own IdFirm1.

We encounter again a familiar problem. On the one hand we need a variable located in the
firms, but this variable needs to be able to access all the consumers. We know how to solve this
problem: place a variable in Firm and a function in Demand, where the function performs the
actual counting and the variable simply store the result. Call Num the variable to be placed in
Firm, whose equation can be written as follows.

EQUATION("Num")

/*

Number of customers of the firm

*/

RESULT(V("ComputeSales"))

For the function ComputeSales contained in Demand we have, however, an additional prob-
lem. The function will be executed on request by every firm, but it needs a piece of information
from each of them. The function Choose we used before did not need to know which consumer
had requested its value: the result was identical for each consumer. While for ComputeSales this
is not the case: the code needs to provide different results depending on the firm that requested
it. How can this be expressed? Let’s see the code for the function.

1This is obviously highly inefficient, though, given the speed of LSD simulations, it will not be too onerous, at
least for relatively small number of consumers. In any case, we will later discuss how to optimize the model to speed
up the execution.

94

6.4 More on the LSD Debugger asda 95

EQUATION("ComputeSales")

/*

Compute the customers for each firms

*/

v[0]=VS(c,"IdFirm");

v[2]=0;

CYCLE(cur, "Consumer")

{

v[1]=VS(cur,"ProductChosen");

if(v[0]==v[1])

v[2]++;

}

RESULT(v[2])

The first line of the equation is what allows the function to behave differently for each firm. It
uses the usual VS(...) LSD function, requesting the value of an element (IdFirm) from a specified
object. The particularity is the object specified, c. This a pointer, that is, a C++ “variable” meant
to contain objects instead of numerical values, as the cur. The difference is that c cannot be set by
the modeller, as cur requires, but is automatically set by the LSD model manager: it contains the
caller object, that is, the object containing the variable requesting the value for the code under
execution. In this case, we have the variable Num stored in Firm ; when one of these variables is
executed it calls ComputeSales, and the equation for this function is given the object containing
the specific object Firm that have its Num under computation. The modeller can use this object
referring to c. As a result, the equation for ComputeSales is able to access all the content of
that specific copy that requested its value.

The computational elaboration of the equation is rather obvious. Firstly, the local variable
v[2] is set to zero. Then all consumers are scanned, using the CYCLE(...) command. For each
consumer we read its value of ProductChosen ; if this value is identical to the value of v[0], then
we increase the counter v[2].

To perform these operations we use two C++ expressions. The if(...) command is a con-
ditional statement: it control whether the condition expressed within parentheses is true or false.
If it is true, the following line is executed, otherwise it is skipped. Note that the condition uses
the expression ==, which differs from = in that the latter is the assignment command in C++.
Confusing the two generates dangerous errors. In fact, the “condition” v[0]=v[1] is always true,
since it means: “place in v[0] the value of v[1]”, which C++ interpret as a true value.

The counter assignment, executed under condition of v[0] and v[1] being equal, is expressed
using a piece of C++ jargon. The ++ placed after a variable is interpreted as v[0]=v[0]+1. It is
merely a formatting rule, allowing to simplify the writing (and reading) of the code.

We can now run the model. Save the configuration, containing the new variable and function,
and close the LSD model program. Place the code for the new elements in the equation file and
compile the new LSD model program using Model/Run. Once this appears, load the configuration,
ensuring that variables Num are marked to be saved, and run the simulation. You should now to
be able to see the series for Num representing the number of consumer for each firm,

6.4 More on the LSD Debugger

Our model is getting more elaborated. Let’s imagine that something is going wrong or, in any
event, that we want just to control that simulation runs as it is expected to. Before running a
simulation open the simulation setting (Run/Sim. Setting). Place 50 in the entry corresponding
to Insert Debugger at. Then, mark the function ComputeSales as being debugged. Now run the
simulation and it will show the LSD debugger immediately after the marked function just completed
its code at time step 50.

The window will show the content of the object containing the element that interrupted the
simulation, Demand in our case. We know that this is a function, which can be executed only if
a variable Num requested its value. To confirm this, press the button Print stack, in the first row
of buttons. The Log window will show the state of the stack at the moment the simulation was
interrupted, showing the following message.

95

asda 96 Implementing LSD Models: Example 2

List of Variables currently under computation.

(the first-level Variable is computed by the simulation manager,

while possible other Variables are triggered by the lower level ones

because necessary for completing their computation)

Level Variable Label

2 ComputeSales

1 Num

0 \LsD Simulation Manager

It means that ComputeSales have been executed as “stack level” 2, as a consequence of being
requested by a variable Num.

The debugger allows to observe the values of all the temporary C++ variables v[i] with their
value at the end of the just completed equation. Press the button v[...] in the debugger window,
the second from the left in the first series of buttons, and a new window as in figure 6.2 will appear.

Figure 6.2: Series of the v[i] provided by the debugger.

Of the values shown, only the first three, v[0], v[1] and v[2] are used in the simulation:2 v[2]

is the counter, so that it has the same value of the ComputeSales value; v[1] is the product used
by the last consumer; and v[0] is the id of the firm requesting the computation of ComputeSales.

We can use the debugger to control whether these values are indeed correct. Press the button
Caller, second from right in the second row of buttons. The debugger will be moved to show the
caller object, that is, the one containing the variable that triggered the debugged element. In our
case, it is the very first copy of the Firm, with IdFirm equal to 1. Notice that variable Num will
be not udpated at the 50th time step, because the simulation stopped just after ComputeSales
completed its equation, and therefore it has not provided the result to Num, which appears still
as not computed.

Use then the arrows to go up the firms (Supply), right (Demand) and down (the first Con-
sumer). Press now the button Last ; the debugger will then move to the last object of the set of
Consumer. The variable ProductChosen for this consumer will be the same as that indicated
by v[1], since this C++ local variable was loaded with this value in the last round of the cycle for
ComputeSales.

Clicking on the button Step will cause the model to continue the simulation until the next
equation for an element to be debugged is encountered. In our case, we have only the function

2The other ones express a value reflecting the state of the memory allocated, so that they are, to all effect,
random values over the entire set of real numbers. This also shows why we need to set to zero the counter v[2],
since the content of these variable is impredictable.

96

6.5 Extending the model asda 97

ComputeSales set to interrupt a simulation run for debugging, and thus we will see again the de-
bugger showing the Demand object, at, again, the same 50th time step. This would be impossible
if ComputeSales where defined as a variable, since variables would be computed once, and only
once, at every time step. But this being a function, its code is re-executed when another equation
requires its values. Press Caller, and you will see the object for the second Firm shown by the
debugger, since it is its own copy of Num which caused ComputeSales to be (re-)computed.

Press Run to continue the simulation until its natural completion.

6.5 Extending the model

We have now a model producing the sales of each firm as a function of a (rather basic) consumers’
behaviour. To analyse in detail the results we need to generate some statistics on the model results.
Though statistical packages may be used for the purpose, feeding them with the raw model results
(Num in our case), it is generally simpler to write the statistics as LSD variables directly in the
model. In fact, C++ is faster than any statistical package, and moreover we can observe directly
the statistics at run time, speeding up the process of analysing the results. Moreover, writing the
code for the most of statistical indicators is rather trivial, and we may use this as a further exercise.

Let’s implement the code computing an indicator of concentration for the market shares. Con-
sider the Herfindahl index, expressed as:

H =

N∑
i=1

ms2i

where msi are the market shares of firm i. Actually, a better indicator is the inverse of the
Herfindahl index, InvH = 1/H, which becomes an index of dispersion. This indicator (which is
always larger than 1), reports the equivalent number of firms with identical shares of the market
that would generate the same concentration measured in the actual market.

To write this equation in LSD we need also to write the equations for the market shares and
total sales.

EQUATION("ms")

/*

market shares

*/

v[0]=V("Num");

v[1]=V("TotalNum");

RESULT(v[0]/v[1])

The equation for market shares pose no problem, being a ratio between Num, which the model
already computes, and TotalNum, that we still need to implement. Its equation is:

EQUATION(’’TotalNum’’)

/*

Sum of all the sales

*/

RESULT(SUM(’’Num’’))

The code for TotalNum uses one of the LSD functions, SUM(’’Lab’’). This function returns the
sum of all the elements Lab contained in the group of objects descending from the object containing
the variable. Therefore, in our case, we need to place TotalNum in the object Supply3.

As for the inverse Herfindal we use the usual system to cycle throughout the firms.

3We may even place this variable in Market, since it is an object superior to the ones containing Num.

97

asda 98 Implementing LSD Models: Example 2

EQUATION("InvHerf")

/*

Inverse Herfindal index

*/

v[0]=0;

CYCLE(cur, "Firm")

{

v[1]=VS(cur,"ms");

v[0]+=v[1]*v[1];

}

v[2]=1/v[0];

RESULT(v[2])

Notice the C++ expression v[0]+=v[1]*v[1], which is a short version equivalent to v[0]=v[0]+v[1]*v[1].
As we have seen before, this equation simply cumulates in v[0] some values for each firm (in our
case, the square of market shares). The result is simply the inverse of the cumulated values.

We can now compile and run the LSD model program, if there are no compilation errors. If you
typed the three equations, than the probability of typos, or forgetting elements, will be rather high.
Consider that error messages can be spurious. If, for example, the code lacks a closing parenthesis,
the compiler is likely to generate many errors for the legal code following the missing character.
Therefore, if the compiler signal many errors, try always to fix only the very first error indicated in
the list (which is the earliest in the file of the equations), and ignore the others. Re-compile and,
it is likely that at least some of previously signalled errors have now disappeared from the list.

Once the LSD model program embedding the equations is running, load the existing configura-
tion and add the variables TotalNum and InvHerf in Supply, and ms in Firm. Mark all of
them to be saved and ms to be also plotted at run time.

When you will launch the simulation a new window will appear, called 0 Run Time Plot. This
window generates the time series graph for the variables marked to be plotted at run time. The
vertical scale is automatically adjusted, and therefore users should not set the run time options
variables with very different ranges of values (say, putting Num and ms), since the vertical scale
(topping the thousands) will make all market shares to be squeezed in a unreadable line close to
the bottom of the graph.

In any case, the run time windows are useful to provide a quick understanding of the overall
results of a simulation run without stopping it and using the analysis of result module.

The results produced in the model reflect the randomness governing the behaviour of consumers,
producing fluctuating market shares. However, higher quality firms have consistently higher shares,
on average, than lower quality ones, as we may have expected. We can now move to consider how
the concentration of the market can be controlled.

6.6 Multiple parallel simulations

An obvious way to extend or restrict the dispersion of the market consists in changing the distri-
bution of qualities across firms. At the moment we initialized the model to have firms with quality
ranging from 10 to 19. If we modified this distribution ranging, say, from 10 to 30 or more we would
clearly generate higher concentration, since the quality differences will increase the probability of
consumers choosing high quality firms.

A less obvious, but, in some cases, more efficient way to model the concentration of shares
consists in modifying the transformation of qualities in probabilities. We implemented the model
representing the probability of each consumer to choose product i as pi = qi∑

j
qj

, where qi is

the quality of the product. Consider the slightly different generation of probabilities as follows:

pi =
qαi∑
j
qα
j

, where α is a non-negative parameter. Maintaining constant the qualities qi the lower

α the more similar will be the probabilities, while the higher α the steeper will be the probabilities
differences. Figure 6.3 shows how α affects the probabilities.

The graph4 shows an identical distribution of qualities and different values of α, so that summing

4The figure has been generated with LSD, after having suitably implemented the equations for the probabilities,

98

6.6 Multiple parallel simulations asda 99

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

Probabilities

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

alpha
 10

 11
 12

 13
 14

 15
 16

 17
 18

 19

Quality

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Figure 6.3: Distribution of probabilities for the same distribution of qualities corresponding to different
α’s. Higher values generate stronger differences of probabilities, while values closer to 0 generate almost
identical probabilities.

up across the axis for qualities we always obtain 1. However, lower values of α generate almost
identical probabilities (close to 0.1, given that there are 10 firms). Instead, high values of α
concentrate the whole probabilities only on the high quality products.

Let’s modify the model so that the consumers’ choose proportionally to the power Qualityα,
instead of Quality. Close the LSD model program and introduce the equation for a new variable,
call it Visibility :

EQUATION("Visibility")

/*

Evaluate the visibility of the product for the consumer

*/

v[0]=V("alpha");

v[1]=V("Quality");

v[2]=pow(v[1],v[0]);

RESULT(v[2])

Note the pow(base, exp). This function one of the mathematical functions available in LSD,
providing baseexp, where base and exp are two positive real numbers or variables. We also need to
change the equation for Choose, replacing the line

cur=RNDDRAW("Firm","Quality");

with

cur=RNDDRAW("Firm","Visibility");

Compile the LSD model program and load the configuration. Since alpha must be identical for
all the firms, we can place it in object Supply. Finally, introduce the new variable Visibility in
objects Firm. Initialize alpha to 1 and run the simulation. Observe the results, then re-load the
simulation and test two runs with alpha equal to 0.1 and equal to 10. As expected, the sales (or
market shares) are more concentrated with lower alpha, producing higher dispersions measured

and using the 3D features for scatter-plot. Below we will provide details on how to generate these types of graphs.

99

asda 100 Implementing LSD Models: Example 2

by InvHerf, while the opposite happens for high values of alpha. The next step would be to
compare the results for a full range of alpha, for example producing a graph reporting the values
of InvHerf as a function of alpha.

In order to comparing the results from different simulations, identical in all conditions but for
one parameter, there are two possible alternatives. We may generate a simulation, save the results
on a file, then change the parameter, re-run the simulation, save the results, and so on. Finally,
we may merge all the results and making our comparison.

This strategy, though technically viable5 is not very efficient. It would require to launch tens of
simulations manually and, for each of them, executing the following step: save the results; reload
the configuration; change the parameter’s value; re-lunch the new simulation run. Though each
step takes a few seconds, repeating them, say, 100 times would occupy the modeller for the good
part of an hour, in a quite boring activity.

The object structure of LSD model allows a much simpler and faster strategy: multiply the
object Market and assign to each of them a different alpha. A single simulation run will then
produce all the data we need to perform the comparison. Each object Market will be independent
from the others, in effect representing a separate simulation run. The great advantage of using
object, instead of vectors, is that having many Market ’s instead of one makes no difference to the
equations of the model. The only potential problem we may encounter is that we will have a large
number of variables, potentially slowing down the simulation to unacceptable levels, and generating
problems to identify variables from different firms and markets. However, the underlining C++
layer of LSD is able to exploit at best the computational power of the available harwdare, as well
as the memory, so that there are rather loose constraints in this respect.

The second potential problem is that we may get confused in dealing with the huge number of
variables, not being able to identify related series, as, for example, those generated by the firms
in the same market. LSD avoids such problems by automatically attaching each series with a tag
identifying uniquely the object to which the series refers to. Moreover, LSD offers an efficient tool to
search and select series on the base of the tags, so to avoid being forced to scan manually thousands
of series.

Re-load your configuration and move the browser to show object Market. Opening menu
Data/Set number of obj. you will be given two options. The first, All types ..., allows to show the
whole tree of objects of the model. The second, Only current ... allows instead to set only the
number of objects in the browser, in our case Market. This second option is faster to use when
you need to change only one type of objects, so choose this and type in 100. Pressing Ok you have
generated 100 copies of Market, as shown by the LSD Model Structure graphical representation of
the model.

All copies of the newly created objects are identical, but we want to assign different values for
alpha. Therefore, move the browser to Supply and select menu Data/Init. values. In the resulting
window click on the Set all button corresponding to the parameter alpha. We can now assign to
each copy of this parameter in the different Market ’s a different value. Choose the initializing
function Range and set the values 0.1 and 10 for the extremes. This function computes how many
copies of the element to initialize are present in the model, and divides the requested range in
evenly-spaced subranges, assigning to each of the elements the extreme for the subranges. See the
Help button on this window for further details on this and the other initializing functions.

In order to control that the initialization worked as expected you can control on the initial
values’ window. However, this window is limited to contain a maximum of 100 cells for each
element6, and therefore, in general, it is not sufficient to control all initial values, when these
exceeds this number.

Another interface to control the values contained in the model is the same used for the debugger,
which can be also activated to observe the model content before or after a simulation run. Open
menu Data Browse and you will see the Debugger window, but for the button controlling the

5LSD allows to save the results in such a format to be later loaded in the Analysis of Results module, as if they
were just produced by a simulation. The operation can be also performed for many different result files, whose
content will be then merged in a single result dataset.

6The reason is that such a window will become exceedingly “heavy”, given the large number of elements and their
links to the actual C++ representation of the model. Moreover, it can hardly be imagined a user willing to type
more than 100 initial values manually. Obviously, the initialization functions apply to every object in the model.

100

6.7 Series tags and advanced selection asda 101

simulation flow (e.g. Run, Step, etc.), which are meaningless in this context. Use the arrows to
move around the model, controlling that there are actually 100 markets, and each of their supplies
has the prescribed values for alpha. Notice that you can move only following the links of the
objects; for example, you cannot move from one object Supply to the next object of the same
type using the right arrow only. In fact, you will find firstly the Demand contained in the same
Market and then the right arrow will not be able to move beyond that. To reach the next object
Supply you need to move up to go to the Market, then right to reach the next one, and down to
show its own copy of Supply.

O b j e c t
{pa r , va r , f un }

s o n - >

n e x t - >

u p - >

Figure 6.4: Object structure representation in LSD. An object contains the minimum information possible,
besides its content of variables, parameters and functions. In particular, the structural content of the
objects, allowing to place the object within the model structure, are only three: son-> indicates the very
first copy of the objects descending from it; next-> indicates the subsequent object in the list of the parent
object; up-> indicate the “parent” object, containing it. The internal LSD functions exploit these three
fields of any object to perform any activity, like searching for variables, showing the objects’ content, etc.

The pattern among objects is determined a very limited number of links, which the LSD functions
exploit to travel the model when needing to perform some activities. Figure 6.4 represents the three
only objects that can be access from any given starting object: the one “up”, containing it; the
one “down”, the first of the descending objects; and the one “right”, the next in the list of the
objects contained in the parent (“up”) object.

Ensure that InvHerf and alpha are both set to be saved. Also, it is better to remove the
options to generate the Run Time Plot. In fact, this option set for the market shares (ms in
object firm) would produce a graph comprising 10 x 100=1,000 series. Besides being rather
useless, generating such a heavy graph would slow down the simulation. You can use the menu
Run/Remove Plot Flags to remove any option (“flag”) to plot an element of the model in the Run
Time Plot.

The simulation will be quite slow, anyway. Partly this is due to the sheer amount of computation
requested: 1,000 consumers per market, each scanned by each of the 10 firms. However, the
model we built so far is particularly inefficient, requiring each firm to repeat the cycle through all
consumers. This strategy can obviously be improved, as we will see below. Anyway, for the time
being we can keep the model as it is and analysing the results produced.

6.7 Series tags and advanced selection

LSD models allow the generation and saving of so many series that simply identifying the ones to
be selected (for example, for plotting) can be all but impossible using only the normal scrolling
and clicking7. In this paragraph we describe the use of the advanced selection system for series in

7Relatively complex models may require to analyse several thousands of series.

101

asda 102 Implementing LSD Models: Example 2

the Analysis of Result module, to be used when the number of series available is too large to use
the manual selection.

At the end of the simulation open the analysis of results. We have generated 100 groups of
series, one for each Market. Each group contains one series for alpha and InvHerf, plus 10 series
for market shares ms and sales Num. Notice the tags generated along the elements’ names in the
Series Available list, a sample of which is shown in figure 6.5.

Figure 6.5: Sample of a numerous set of series available for analysis of results. Each series is indicated with
the label of the element it refers to; a tag identifying the copy of its object (see the text); the simulation
time span it existed; and a unique identification number.

.

LSD automatically generates a tagging system in order to identify series from different objects.
Each tag includes a number of digits equal to the “layer” referring to the object containing the
element. The first layer is composed by the objects contained in Root ; second layer is composed
by the objects contained in first-layer objects, etc. For example, alpha 45 1 is the series for alpha
contained in the 1st object (Supply, in a second layer) which in turn is contained in the 45th object
(Market, first layer). Series from firms (third layer, contained in Supply and Market) use three
digit tags for the Market, Supply (always 1, since the model contains only one copy per market)
and Firm.

As we have already seen, clicking with the right button of the mouse on a series creates a new
window allowing the use of selection criteria concerning all the series sharing the label of the series
considered. For example, right-clicking on a series for ms in our model generates the window
shown in figure 6.6.

The first option (set by default) allows to select all the series with the label specified. The
second option makes use of the tagging system. The user can specify in the cells located in the box
for the option Select for series’ tags any desired value. The system will compare the values in each
cell with those of the series, applying the condition specified in the lowest part of the window, Set

condition to meet. For example, the criterion used in the figure requires to select all the series with
label ms having the value of 23 in the first part of the tag. Since this part identifies the markets,
the result will be to select all ms contained in the objects Firm in the 23rd market. Notice one
may change the condition to meet; instead of equality one may for example select Larger ¿, so that
the selection will include all the ms from the market 24 included until the last market, 100. It
is also possible to fill more than one cell: the selection will include the series satisfying all the
conditions for each filled cell. Empty cells are supposed to be always satisfied.

Besides using the tag system, it is possible to use a further selection system, based on the values
of another series in the same or related object. For example, this third option allows to select all
ms located in objects containing specific values for Num at a given time step. Also, it is possible
to select the market shares contained in firms part of a market with specific values for alpha.

Selecting the third option Select for values in another series it is necessary to indicate the label of
one of the existing series, a time step and a comparison value. The system will then associate the
series under selection (in our example, ms) with the series indicated. The association is based on
the tags, that is, each copy of the series under selection will be associated to a copy of the indicated

102

6.8 Cross-section scatter plots asda 103

Figure 6.6: Selection criteria for the series ms. Since market shares are contained in objects located in
the third layer, the selection via tags permits to use three digits for, respectively, the (Market, Supply
and Firm.

.

series sharing the same tag. Then, the system controls if the indicated series (at the time step
specified) has a value meeting the condition with the comparison value: if the condition is met,
the series is selected. Try, for example, to select all ms such that the values of alpha at time step
100 is larger than 5. The Series Selected will then contain all market shares from the 51st market
and following, since these are the markets containing alpha satisfying the indicated condition.

A similar system can be used clicking with the right button of the mouse on the Series Selected

list box. In this case, the system add to the selection a group of series, for possible removal.

6.8 Cross-section scatter plots

In this paragraph we present the use of the Analysis of Results module to generate scatter plots,
that is, graphs having two variables on the two axes and reporting a point at the coordinates
indicated by two the elements of two. Such graphs can be generated using either a time series
perspective or a cross-section one. In the time-series case you define a series whose values will
appear on the horizontal axis and one series that, for the same time step, generates the vertical
coordinate. In the cross-section case you need to select two blocks of series that, at a given time
step, will produce the horizontal coordinates (the first block) and the vertical one (the second
block). Obviously, the two blocks must have the same number of series.

We have generated now a series for alpha and InvHerf from each market. Select firstly all the
series for alpha and then all the series for InvHerf. In the Series Selected you will find therefore
200 series in total. Select the plotting options (lower right panel of the Analysis of Results window)
for Points, Cross-section and XY plot. Click then on the button Plot.

The first entry defines the time step to consider, by default the latest available. Each series will
provide its value referring at the time step indicated here. The last entry requests the number of
“dependent” variables, those to be reported on the vertical axis. The system will read the series in

103

asda 104 Implementing LSD Models: Example 2

Figure 6.7: Options to generate a cross-section (i.e. same-time) scatter plot.

.

“blocks”, defined on the basis of their positions in the Series Selected list box (and independently
from their label). If there is only one dependent variable the system infers that there are two
blocks: the first half of the series is to provide the values to be measured on the horizontal axis,
and the the second half those for the vertical axis. Inserting 2 dependent variables the system
divides the series selected in three blocks, the first for the horizontal axis and the others for two
(reciprocally independent) variables to be plot on the vertical axis.

In general, assume that there is 1 dependent variable, that there are N series in the Series

Selected, and that vit indicates the value at time t of the series in ith position in the series selected.
In this case, there will be N

2 points plotted in the graph with coordinates:

(v1t , v
N
2 +1
t); (v2t , v

N
2 +2
t); ...; (vit, v

N
2 +i
t); ...; (v

N
2
t , v

N
t)

If there one indicates 2 dependent variables there will be two “variables” plotted in the graph,
each comprising N

3 points. The first will have coordinates:

(v1t , v
N 1

3+1
t); (v2t , v

N 1
3+2

t); ...; (vit, v
N 1

3+i
t); ...; (v

N 1
3

t , v
N 2

3
t)

The second will have the same horizontal values, and the last block as vertical ones:

(v1t , v
N 2

3+1
t); (v2t , v

N 2
3+2

t); ...; (vit, v
N 2

3+i
t); ...; (v

N 1
3

t , vNt)

Obviously, the user can place as many dependent values as necessary. The system will control
that the number of series selected is a multiple of this number plus 1. Moreover, the option window
above will show the number of points resulting from the indicated number of dependent variables.

Accepting the default options we will create a scatter plot graph having the values of alpha on
the horizontal line and the values of InvHerf measured on the vertical axis. Clicking on button
Ok, the system will generate the data necessary for gnuplot to generate the graph8. However,
before actually seeing the graph, a new window offers another option. The graphs generated by
gnuplot can be embedded in standard LSD graph windows, exploiting their facilities as, for example,
exporting the graphs in postscript files. However, the translation produces a lower quality graph.
Alternatively, it is possible to generate the graph in directly as a gnuplot result, external to LSD,
obtaining a higher quality. In this latter case, the graph window will not be under control of LSD

(e.g. closing LSD the window will remain open), and there will be a button-only window closing
the gnuplot graph9.

Pressing Yes (i.e. generating a low quality graph embedded in LSD window) will generate the

8Gnuplot is a graphical package available for free (see its distributional license) for Linux and Windows platforms.
The distribution of LSD for Windows includes a copy of this package. LSD uses Gnuplot to generate all scatter plots.

9Users may access gnuplot directly by opening its shell from menu Gnuplot/gnuplot. Any scatter plot graph
generates also the script necessary to create the graphs in gnuplot (extensions .gp), that users can
customize to change titles, variable names, etc.

104

6.9 Creating new series asda 105

graph reported in figure 6.8.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10
alpha_1_1

InvHerf_1_1(100)

Figure 6.8: Values of InvHerf at time 100 expressed as a function of alpha.

.

This graph shows that lower values of alpha generates higher dispersion, and viceversa. Al-
though the relation is clearly visible, the graph reflects the randomness of the consumers’ choice.
However, our data contain 100 time steps, each with constant alpha and with (randomly based)
different InvHerf. Clearly, getting the average values for each series across all the time steps
should provider a clearer relation.

6.9 Creating new series

The Analysis of Results windows can manipulate existing series (as those generated from simula-
tions, but also loaded from files or taken from the current model configuration) to generate new
series. Clear the Series Selected pressing the button Clear and insert all the series for InvHerf.
Therefore, there will be 100 series (one for each market) defined over 100 time steps (from 1 to
100), the length of the simulation run.

Press the button Add Series. A new window will ask which type of series you want to add to
the data set already available.

Current model configuration allows to add to the series available for analysis the data from the
current state of the model. These series will result as having a single time step datum avail-
able,conventionally indicated with time 0. Any cross section analysis done with these “singleton”
series will always use the 0 time step, even when used (as in the scatter plot) with other series
indicated with other time steps.

File(s) of saved results allow to load a data from a previously saved LSD simulation. This series
will be identical to the data from a just terminated simulation, but for the letter “F” added to
their label.

Create series from selected series. Choose this option and press Ok. A new window, reported in
figure 6.9, will ask for a few options.

The new series can be generated as one of five statistics: average, sum, maximum, minimum
and variance. There are two possible ways to compute the statistics. The first, Compute over

series, generates a series with the same number of steps as those selected. Each time step of the
newly created series will contain the statistics computed on the value for that time step across the
selected series.

105

asda 106 Implementing LSD Models: Example 2

Figure 6.9: Options to generate a new series from elaboration of the series in Series Selected.
.

The second option, relevant for our purposes, is Compute over cases. Choosing this option the
system will create a new series with a different virtual time scaling, different from that of the
simulation. In effect, this option operate a sort of “transposition” of the original data, turning a
statistics over time steps in a single element of a new series, whose “time” actually correspond to a
series. Every “time step” for such a series will correspond to one of the series selected: first series
will generate the “time step” 0 of the new series, second selected series generates time step 1, and
so on. For each time of the created series the statistics is computed across all the simulation time
steps in which the selected series is defined (in our case from 1 to 100). Choose this option and
leave the default choice Average. If desired, you can also set a different label for the new series,
whose default value uses the first label and a modifier indicating the statistics used. There is also
an entry to associate the new series to a tag, which may be used for searching purposes.

Pressing Ok on this button a new series will be generated, placed in the last position of the
Series Available list box. Notice that the new series has the label and tag defined, and contains as
many “time steps” as the series originally selected for its creation. It also is attached the name
(created) to distinguish it from other series.

We now have a series composed, for each of its “time steps”, of the average values for the
different InvHerf. If we generate a time series plot of this series we, in effect, will generate a
cross-section plot over all the markets, and using the average value that InvHerf had in each
market across all the simulation. This graph is clearly more well-defined that those produced as
a scatter plot over a single period, given that the random variability is sensibly smoothed down.
However, the time series plot of a created series is, in general, a bad substitute for an actual
scatter plot. However, we cannot generate a scatter plot using the existing series alpha ’s, since
these values are represented as different series, while our average InvHerf is stored as a 100 time
steps series. We need therefore to generate another series, using the original alpha and creating
a matching Avalpha, following the same way we used to generate the first newly created series,
AvInvHerf.

When the two series are available, both defined over time steps from 0 to 99, we can then
generate a scatter plot. Select first the series for Avalpha and then for AvInvHerf. Select
the option XY plot and Points but, differently from the previous scatter plot, select Time Series.
In fact, the 100 points to generate on the graph must be taken from the series across the same
“time steps”. Press Plot and choose between a low-quality, LSD windowed graph, or a high-quality,
external gnuplot graph. The resulting scatter plot will show a much neater relation between the
alpha and average InvHerf.

106

6.10 Random events asda 107

6.10 Random events

The model we have developed so far is still not a proper dynamic model. In fact, it simply draws
randomly a new product for each consumer at every time step, ignoring any past event, so that,
in effect, generates a series of unrelated random events. In this paragraph we start to modify the
model adding a dynamics: past events condition current ones. The objective is to have consumers
that generally stick to the currently owned product, and make a purchase only if the currently used
product fails in some, unspecified respect. Therefore, the sales observed at any time will depend on
the number of consumers per firms in the previous time step, introducing a dynamic content of the
model. Before this, however, we need to introduce some new LSD functions for models’ equations

Let’s suppose that the model provides consumers with a probability for the product to fail, or
need a replacement for whatever cause. To represent in the code a probabilistic event we need two
computational structure: a conditional statement and a random event with variable probability.
LSD offers a large number of probability functions. We will use the RND function which generates
a new random value in [0,1] every time it is executed in the code. This function provides a real
value with a uniform distribution, that is, the probability of producing a value smaller than a given
threshold is the threshold itself: P (x < X) = X, with X ∈ [0, 1]. Thus, for example, if we execute
1000 times the function RND we can expect a value smaller than 0.3 about 300 times and a value
between 0.3 and 1.0 the remaining 700 times.

This property allows to turn a continuous random uniform function like RND in a discrete random
event (say 0 or 1) whose probabilities can be decided arbitrarily. Consider the following code:

...

if(RND<0.3)

{/*

this block of code is executed with

30% probability

*/

}

else

{

/*

this block is executed with the

remaining 70% probability

*/

}

...

The the program executes the first line of code, it draws a uniform random value; if this value
is smaller than 0.3, then executes the first block, and ignores the second. Otherwise, ignores the
first block and executes only the code following the else statement.

Notice the C++ notation for comments: they comprised any text within the /* ... */ sym-
bols. Everything in between is ignored by the compiler. Also, as we have seen also in the case of
CYCLE(...), the blocks are delimited by { }. If the block delimiter are not indicated, the compiler
consider the single line following the if and else statements as the only component of the blocks.

In our case, the equation for product chosen will then become:

EQUATION("ProductChosen")

/*

Product used by the consumer

*/

v[2]=... //to place here the probability of the consumer’s product to be replaced

if(RND<v[2])

v[1]=V("Choose");

else

v[1]=VL("ProductChosen",1);

RESULT(v[1])

The equation needs the probability of the product to breaks down and needing replacement,
which we will discuss shortly. If the event “breaks” actually occurs, it then calls Choose providing

107

asda 108 Implementing LSD Models: Example 2

a new product. Otherwise, the equation returns the previous value for ProductChosen.
The next question is how this equation can obtain the correct value of the probability.

6.11 Conditional searches

As we have seen the equations in LSD can, most of the times, take the values from other elements of
a model without specifying where the elements are contained, that is, in which object. The V(...)

LSD function returns the most likely copy each equation needs to use.
However, in some cases the modeller needs to explicitly indicate one of the copies of a multiple-

copy element. In our case, we assume that the probability of a product to fail depends on the
producer of that specific product. Say that objects Firm contain a parameter, called ProbBreak
expressing this probability. In this case, we cannot rely on LSD to find which firm should provide
this parameter when ProductChosen is executed. The reason that any consumer can need to
use products through the simulation time, and therefore requires different copies of ProbBreak.
Indeed, the very structure of the model tells that we cannot rely on the automatic LSD identification
of a specific copy of Firm for each copy of Consumer. In facts, the two groups of these objects
are contained in different “branches” of the model, and there is no obvious path leading from one
object to another.

To obtain the value of ProbBreak we need therefore to make two steps: firstly, obtain identify
a property of the copy of the firm we need; secondly, to identify the object satisfying that particular
property. In our case, the property to use is the identification of the product used in the past by the
consumer, which can be obtain by the command: v[1]=VL("ProductChosen",1);. Secondly, we can
use a new function returning a specific object, the LSD function: SEARCH CND(’’label’’, value).

This function scans the model searching for an object, and returns the copy of the object
containing an element that meets a condition. The condition is that the copy of the object must
have the element label having the value value10.

In our equation the use will be:
cur=SEARCH CND(’’IdFirm",v[1]);

whose meaning is: scans the model searching for a copy of the object that contains IdFirm
with value equal to v[1]. The object found is assigned to a temporary pointer, cur, that is, a C++
variable that stores, instead of numerical values, copies of objects.

Finally, the value of the element ProbBreaks contained in that specific object can be computed:
v[2]=VS(cur, ’’ProbBreak’’);

The complete equation’s code will then be:

EQUATION("ProductChosen")

/*

Product used by the consumer

*/

v[1]=VL("ProductChosen",1);

cur=SEARCH_CND("IdFirm",v[1]);

v[2]=VS(cur, "ProbBreak");

if(RND<v[2])

v[1]=V("Choose");

else

v[1]=VL("ProductChosen",1);

RESULT(v[1])

6.12 Endogenizing parameters

The model represents now consumers that make a new purchase with a probability which is a
characteristic of the producer. When they do make a purchase, they choose according to another
characteristic of firms, Quality. We may now ask what would happen if the consumers have

10If there are many copies meeting the condition, the “closer” to the calling object is returned. If no object
satisfies the condition, the function returns a conventional value.

108

6.13 Custom initialization: overwriting elements’ values asda 109

no information on the quality of products, and choose (when making a purchase) according to
probabilities proportional to the market shares of the different sellers.

This assumption amounts to consider consumers as “trusting” the market as a whole to suggest
the best products, those lasting longer and breaking less frequently. The parameter alpha can then
assume a more explicit meaning. The higher this value, the stronger consumers trust the market,
giving higher probability to higher market shares. Lower alpha represent, instead, consumers
more suspicious of the signals provided by market shares. We can then ask ourselves whether the
market is able to funnel the “correct” information to consumers, giving higher market shares to
products with the lowest probability of breaking down11.

To explore this question we need to modify the model by changing the equation for Visibility :

EQUATION("Visibility")

/*

Evaluate the visibility of the product for the consumer

*/

v[0]=V("alpha");

v[1]=VL("ms",1);

v[2]=pow(v[1],v[0]);

RESULT(v[2])

Notice that we are forced to use the past market shares. In fact, consumers makes their decisions
at time t before the market shares can be computed, and therefore, using time t market shares for
time t decisions would cause a dead-lock error. For this reason we need to edit the variable ms to
have 1 lag.

Compile the model including the new equations for ProducChosen and Visibility. With the
new LSD model program load the previous configuration and add the parameter ProbBreak to the
object Firm. Initialize this parameter assigning different probabilities, from 0.19 to the first firm
to 0.1 to the last one12. We need to make further changes to the configuration. In fact, variables
ms and ProductChosen are now used with lagged values. Try to run a simulation without editing
these variables: an error message will be issued by the system, signaling the mismatch between the
code and the configuration. After the error, close the LSD model program.

To fix the error we will simply need to edit the variables in the configuration indicating that they
need to have a one lag, instead of 0 lags. However, doing this we will need to provide initial values
for these variables, that is, assigning initial market shares and initial products used by consumers
to be used as time 0 values at the first time step. Though the LSD initialization functionality
is quite flexible, we have now a conceptual problem. In fact, the two initializations need to be
consistent: the market shares at time 0 must reflect the number of consumers for each product.
The next paragraph discusses how this problem may be easily solved.

6.13 Custom initialization: overwriting elements’ values

The initial values for a model sometimes need to be computed in a special manner, ensuring consis-
tency between different series of values. For example, suppose that in our model we want to have
that consumers appear, in the beginning of the simulation, to have a uniformly random distribu-
tion. The actual number of consumers starting with ProductChosen will likely deviate from the
expected value, and we want this deviate to be reflected in the market shares initially assigned to
the firms. To obtain this result would be very difficult by using the standard initialization function-
alities of LSD model program13. Conversely, it would be easy to express the initialization function

11This question and the model developed to solve it was posed in Smallwood and Conlisk, 1979, “Product Quality
in Markets where Consumers are Imperfectly Informed”, Quarterly Journal of Economics, 93-1. The original authors
developed a rather complex system of differential equations, which provides only limited results. The simulation
version here developed replicates those results, besides being able to extend the assumptions imposed in the original
article.

12You can use the Set all button for this parameter and using the Increasing option, starting from
0.19 and steps -0.01.

13It may be possible assign 1 to the variable ProductChosen for the first 10% of the consumers, 2 to the second
10% and so on, so that to ensure exact 10% market shares for each firm. However, this approach would need to be

109

asda 110 Implementing LSD Models: Example 2

as the code for standard LSD variable, but for the fact that the variable needs to be computed only
at the very beginning of the simulation run, and never again within the same run.

The content of the equation needs, for each consumer, to choose randomly one Firm, and write
the value of its IdFirm onto the variable for ProducChosen of the consumer, making it appear
as if the written value was computed at the previous time step, that is, time 0. In the process, the
equation needs also to track how many consumers are assigned any given copy of firms, so to be
able to compute the market shares.

The following code represents these computations.

EQUATION("Init")

/*

Initialization function, executed once and then transformed into a parameter

The function ’assigns’ randomly one of the firms to each consumer.

In the process computes also the market shares, which must be initialized to 0.

*/

v[2]=0;

CYCLE(cur, "Consumer")

{

cur1=RNDDRAWFAIR("Firm");

v[0]=VS(cur1,"IdFirm");

WRITELS(cur,"ProductChosen",v[0], t-1);

INCRS(cur1,"ms",1);

v[2]++;

}

CYCLE(cur, "Firm")

MULTS(cur,"ms",1/v[2]);

PARAMETER

RESULT(1)

Let’s see how the equation works. First of all, the variable must be located in object Root.
This ensures that the variable is executed before anything else in the model at the beginning of
a simulation step, since the LSD Simulation Manager begins from this object to update variables.
Moreover, it will be executed only once. In fact, the last command of the code is PARAMETER. This
command transforms the currently executed variable into a parameter, therefore avoiding its code
to be executed twice in the same simulation run.

Concerning the operations executed by the equation, they start by setting a C++ temporary
variable to 0, which will be used to store the total number of consumers (providing the denominator
of the market shares). The equation executes then a cycle throughout all the consumers in the
model and all the firms in the model.

In the cycle for consumers, the equation performs the following operations. cur1=RNDDRAWFAIR("Firm")

draws with identical probabilities one of the firms in the model. This command is equivalent to
the already seen RNDDRAW(...), but for the fact that it needs not to have a distribution of the
probabilities specified, and chooses one of the elements with even probabilities. The chosen copy
of Firm is returned and stored in the pointer cur114. The IdFirm value from the chosen firms is
then read and stored in v[0].

The line with the command: WRITELS(cur,"ProductChosen",v[0], t-1); performs the actual
overwriting. This command is a member of the family of LSD functions WRITE(...), which allows to
specify which object contains the variable to be written, and the time stamp to be associated to the
value. Therefore, this line in the equations writes the value of v[0] in the variable ProductChosen

contained in the object cur, and the system will understand as if the value had been computed at
time step t-1. The global variable t indicates the time step of the simulation, and can be accessed
by the modellers but, obviously, must not be modified.

The line INCRS(cur1,"ms",1); does a similar operation on the variable ms, contained in object
cur1. However, this LSD function does not writes a specific value, but increases whatever value
previously had the variable by the amount specified, in our case 1.

repeated if we change the number of consumers in the model.
14This is another temporary pointer available to modellers. We cannot use the cur since this pointer is already

used in the command for the cycle.

110

6.14 Nested cycles asda 111

Finally, the cycle terminates by increasing the counter v[2] by one unit, using the C++ short
version equivalent to v[2]=v[2]+1.

When the cycle through the consumers is terminated, the next cycle scans all the firms in the
model. For each of them (stored in cur, which is now available since it is not used anymore), the
line MULTS(cur,"ms",1/v[2]); performs a similar operation of INCR(...), but, instead of adding,
multiplies the content of the element by the specified amount, in our case, the inverse of the total
number of consumers.

6.14 Nested cycles

Before running the model we’d better make a small change, possibly useless, to the equation for
Init. In fact, the code reported above works properly in case we have a configuration including a
single market. While we may never be interested in testing configurations using many markets, it
is good practice to write equations’ code that work safely with any type of numerical initialization.

The code we wrote above makes the two cycles without specifying where the groups of objects
for consumers and firms are located. Therefore, the equation for Init will initialize only the first
groups (that is, those in the first market). In the hypothetical case there were many markets, the
consumers and firms in the markets from the second onward would remain non initialized.

The following code fixes this potential problem.

EQUATION("Init")

/*

Initialization function, executed once and then transformed into a parameter

The function ’assigns’ randomly one of the firms to each consumer.

In the process computes also the market shares, which must be initialized to 0.

*/

v[2]=0;

CYCLE(cur3, "Market")

{

CYCLES(cur3,cur, "Consumer")

{

cur1=RNDDRAWFAIRS(cur3,"Firm");

v[0]=VS(cur1,"IdFirm");

WRITELS(cur,"ProductChosen",v[0], t-1);

INCRS(cur1,"ms",1);

v[2]++;

}

CYCLES(cur3,cur, "Firm")

MULTS(cur,"ms",1/v[2]);

}

PARAMETER

RESULT(1)

The new equation uses the same code as before, with the only difference that the two cycles
for consumers and firms respectively are included within another cycle which scans through all
the markets of the model, sequentlly stored in the local pointer cur3. The two cycles need to be
modified so to search the groups of objects from the market pointed to by the cur3 object, using
therefore the format CYCLES(pointer, ’’label’’). Also, the command RNDDRAWFAIR(...) needs to
be updated, in order to draw a firm from the set of firms located in the market initialized by the
cycle.

We can now compile and run the model. Load the previous configuration, which should already
include the modifications we made before (ms and ProductChosen defined with 1 lag, and
parameter ProbBreak defined in objects Firm). Insert the new variable Init in Root and run
the model.

111

asda 112 Implementing LSD Models: Example 2

6.15 Testing the Smallwood and Conlisk (1979) model

The model is now ready to be tested. The problem we want to investigate is to understand whether
a group of consumers unable to evaluate the products on offer, but only to observe their popularity
(i.e. market shares), can eventually individuate, collectively, the products with the best (hidden)
quality.

The model represents a number of firms whose quality is implicitly defined by the probability of
their products to breaks down, needing replacement, at any time step. Consumers cannot observe
this quality, but only the realization of the random event concerning their own currently used
product, that is, whether it breaks or not. In case they do need to replace the product, consumers
choose randomly among producers with probabilities proportional to msαi , where msi is the market
share of firm i and α is a parameter. We can interpret α as an indicator on the trust of consumers
on the market. The higher α the larger probabilities are given to comparatively larger firms, as
if consumers “trusted” the market to indicate correctly the best producers. Conversely, a smaller
α represents markets where consumers tend to ignore market shares as indicators of products’
qualities, and choose with similar probabilities all the firms.

The configuration we prepared contains 10 firms (with decreasing break down probabilities from
19% to 10%) and 1,000 consumers. Let’s start testing the model for α = 1.0. Set the number of
steps to 1,000 and run the simulation, after having set the market shares to be plotted in the Run
Time plot. The result is quite volatile, though the best firm eventually dominates the market and
lower quality firms seem to exit the market following the order of their qualities (worse qualities
firms exit earlier).

Re-load the configuration and increase the consumers to 10,000. The Init variable ensures that
the initialization would work correctly whatever the number of consumers, thus we can directly
run the extended simulation, though it will take obviously longer to complete. The results are
much clearer, as expected, since the larger number of consumers reduces the random volatility. If
you are patient enough, you may still increase the number of consumers to 100,000, whose results
are reported in figure 6.10.

0 250 500 750 1000

0

0.25

0.5

0.75

1

ms_1_1_1 ms_1_1_2 ms_1_1_3 ms_1_1_4 ms_1_1_5 ms_1_1_6 ms_1_1_7 ms_1_1_8 ms_1_1_9 ms_1_1_10

Figure 6.10: Smallwood and Conlisk model with 100,000 consumers and α = 1.0. The pattern is identical
to that of the replicator dynamics model.

The results resemble strikingly those produced by the replicator dynamics model, though being
generated with a totally different computational structure. In fact, in one case we have the model
described at aggregate level, that is, we describe the dynamics of the sales of firms. In the other,
this variables’ values are obtained as the result of lower level entities, the consumers choosing the
products. Moreover, one model is deterministic, and the other is stochastic. Still, they produce
identical results, at least with the present configuration.

112

6.16 Optimizing simulations: semaphores asda 113

Re-load a configuration (say that with 10,000 consumers), and test a few simulations using
different α’s, for example with values 0.7, 0.5, 0.3. As you will observe, all the firms maintain a
positive market share, though the high quality ones have consistently higher shares. Moreover, the
lower is α is the smaller are the differences between the average share levels of high and low quality
firms. Finally, testing the model for α = 0 generates small, but persistent, differences, even though
the consumers choose among firms without any bias.

The model seems, though simple enough, rich of different results that require further investi-
gation. This means that we will need to run many simulations using a large number of consumers,
and therefore the speed of execution of a simulation becomes a crucial issue, possibly relevant for
the very possibility to exploit the model to its full extent. The reason is that we will need to
test many different configurations, comparing the results with different parameterization. If the
simulation producing the results we know are relevant takes hours, or even days, this is not a big
problem, since we can wait and then having our results. But when we are running a simulation
in order to understand the motivations for its results, how certain parameterizations managed to
generate certain properties, we cannot wait for hours just for one of many dozens of relevant tests.

In the next paragraph we will introduce new features that allow a simulation model to sensibly
increase the speed of computation.

6.16 Optimizing simulations: semaphores

Generally it happens that when we build a working version of a model and begin to make heavy
tests on it, we realize that the speed of execution of a simulation run is too slow to allow for an
extensive exploration of the relevant parameter space. Though LSD models are implemented in
the possibly fastest language available, the first implementation of a model cannot be focused on
minimizing the simulation time. However, once the model has been defined, it is possible to try
different versions that, though producing the same results, are far more computationally efficient.

The present implementation of our example model is highly inefficient, from the computational
viewpoint. In fact, we implemented the variable Num in each firm to scan all existing consumers
searching for those that are its customers, in effect duplicating the search as many times as many
firms are present in the model. A first step to speed up the simulation consists in avoiding this
replications. The goal is to implement the model such that, the scanning of all consumers is
executed once for each time step, providing all the firms with changes in the number of their
customers, Num.

This result can exploit the fact that each consumer either does not make any purchase, or, when
it does, “knows” both the firm whose product is dropping, and the firm selling its new product.
At this moment it is possible to “tell” these two firms that they respectively lose a customer and
gained a new one.

Suppose that objects Firm contain two parameters, Lost and Sales, intended to contain, at
each time step, the number of consumers that respectively, dropped the firm and made a purchase
from it. Then, we can re-write the equation for Choose as follows:

EQUATION("Choose")

/*

Choose one of the products for the calling consumer

*/

v[1]=VLS(c,"ProductChosen",1);

cur=SEARCH_CND("IdFirm",v[1]);

INCRS(cur,"Lost",1);

cur=RNDDRAW("Firm","Visibility");

v[0]=VS(cur,"IdFirm");

INCRS(cur,"Sales",1);

RESULT(v[0])

The first lines of the equation tell the firm who used to supply the consumer that it lost a

113

asda 114 Implementing LSD Models: Example 2

consumer. This result is obtained by firstly checking what was, in the previous time step, the
ProductChosen of the consumer who activated Choose (that is, object c). The second line
searches for the object containing IdFirm with the same value. Finally, the parameter Lost in
that firm is increased of 1.

The next two lines remain as before, providing the new supplier for the consumer. The last line
exploits the fact that we have the pointer to the new seller to increase the number of its parameter
Sales of 1.

The modification we made to the equation for Choose allow now to re-write the code for Num
as follows:

EQUATION("Num")

/*

Number of customers of the firm

*/

v[0]=VL("Num",1);

v[1]=V("Sales");

v[2]=V("Lost");

v[3]=v[0]+v[1]-v[2];

RESULT(v[3])

In fact, we do not need anymore to scan all the consumers to count the ones using the firm’s
own customers. Knowing the number of previous customers that defected, and the new ones, it is
sufficient to adjust the previous values with the balance between these two values.

This implementation avoids firms to use the function ComputeSales, which requires scanning
all the consumers, but generates a potential problem, that we need to fix. In fact, Sales and Lost
are parameters, they do not change on their own, but are simply overwritten by other equations
of the model. This means that one a time step have been completed, the values stored in them
remain there. At the subsequent time step the counting of Sales and Lost in each firm will begin
from the previous values stored there, messing up the computation. Therefore, we need to reset
these parameters to 0 before starting a new counting.

For this purpose we need to introduce a new variable, which ensures that Sales and Lost are
set to 0 before any consumer begins to make its purchases. Consider a new variable to be placed
in object Market, computed with the following equation:

EQUATION("Trade")

/*

Initialize to 0 all the sales in all firms,

and then activate all consumers.

*/

CYCLE(cur, "Firm")

{

WRITES(cur,"Sales",0);

WRITES(cur,"Lost",0);

}

CYCLE(cur, "Consumer")

VS(cur,"ProductChosen");

RESULT(1)

This variable returns a useless value, which is set to a constant 1. Its code simply sets to 0 the
“trading” parameters for all the firms, and then asks for the values of variables ProductChosen
for all the consumers. Notice that these values are not used: they are simply requested, so that the
LSD Simulation Manager is forced to compute them before Trade can be completed. This variable
acts, in effect, as a semaphore: when its value (useless) is computed at time t, it means that all
firms’ parameters have been reset and all consumers completed their purchase.

We can edit now the final version of the Num equation:

114

6.16 Optimizing simulations: semaphores asda 115

EQUATION("Num")

/*

Number of customers of the firm

*/

V("Trade");

v[0]=VL("Num",1);

v[1]=V("Sales");

v[2]=V("Lost");

v[3]=v[0]+v[1]-v[2];

RESULT(v[3])

This version of the equation ensures that any copy of Num will begin to execute its relevant
code only after Trade completed the execution of its equation’s code. That is, Trade acts as a
semaphore signaling to Num that the operations on the model required before its code can be
correctly executed have actually taken place.

Having used variable Num with a lag, we now need to initialize this variable, as we did with
variable ms. This can be easily done editing the variable Init :

EQUATION("Init")

/*

Initialization function, executed once and then transformed into a parameter

The function ’assigns’ randomly one of the firms to each consumer.

In the process computes also the market shares, which must be initialized to 0.

*/

v[2]=0;

CYCLE(cur3, "Market")

{

CYCLES(cur3,cur, "Consumer")

{

cur1=RNDDRAWFAIRS(cur3,"Firm");

v[0]=VS(cur1,"IdFirm");

WRITELS(cur,"ProductChosen",v[0], t-1);

INCRS(cur1,"ms",1);

INCRS(cur1,"Num",1);

v[2]++;

}

CYCLES(cur3,cur, "Firm")

MULTS(cur,"ms",1/v[2]);

}

PARAMETER

RESULT(1)

Edit the equation file inserting the Trade variable and modifying Choose and Num as in-
dicated. Run the model and, after loading the configuration, insert the new variable Trade in
object Market and the new parameters Sales and Lost in object Firm. Also, edit the defini-
tion of variable Num, defining it as having 1 lag. You need to open the Init. values window for
objects Firm since, containing elements that need an initialization, the system requires the user
to initialize them, even though the initial value will be useless.

You can now test the simulation, and, as you will see, will be much faster, specially in the
configuration with a large number of consumers.

After the simulation, reload the configuration and observe the order by which the LSD Simulation
Manager executes the equations. Mark the function Choose to be debugged and set the debugger
to be activated at time 1 (Sim. settings), and start the simulation. When the debugger interrupts
the computation after the first time Choose has been computed, click on button Print stack. This
will list in the Log window the variables currently under computation. The list will start with
the first variable in object Market (TotalNum), which triggers the equation for Num, which
requests Trade, which triggers ProductChosen (for the first consumer) and, eventually, Choose.

Semaphores are mainly used to implement efficient simulations, replacing the automatic order-

115

asda 116 Implementing LSD Models: Example 2

ing of executions when the model cannot induce the correct order in which the equations need to
be executed. This is typically the case when the equations make use of the commands WRITE or
INCR.

6.17 Optimizing simulations: pointer hook

6.18 LSD Automatic Documentation

One of the biggest problems in the use of simulation modelling for scientific research is that the
“proof” of a simulation results are difficult to provide. Even in the case the author makes available
the code for the model and the reader is able to read the language (rare circumstance, at least in
social sciences), making sense of the code written by other people is normally extremely difficult,
and generally impossible. On the other hand, a verbal or pseudo-code full description of the model
is, besides extremely tedious, generally extremely large, taking far more space than the reasonable
number of pages available for a paper. And, for even moderately large models, it is likely to be no
more readable than the very code.

The documentation of a model is not only necessary for readers to understand the content of
a model, but it is necessary also to the same modeller. In fact, a model is likely to be developed
during an extended period, when the modeller stops working on a model and return on it after
some time, forgetting the many of the details of the code.

LSD already simplifies the documentation of the model by dividing the computational part of
the model in separated equations. Adding a short comment to each equation’s code is a good,
and cheap, practice. However, the “raw” code of the model is not sufficient to appreciate the full
content of the model, mainly for two reasons. Firstly, the code lacks the numerical initialization.
Secondly, because, for making sense of the model’s working, it is necessary to jump across the code
of different variables, while the equations’ code, contained in a text file, is necessarily linear.

Having LSD installed one can load the model and use the LSD browser to investigate its content.
Clicking on the name of a variable one obtain the window shown in figure 4.5 (pag. 44). This
window can be used also as a documentation tool. The large window in the center can be used
to write any text commenting the element. Pressing the button Auto docum. the window will be
automatically loaded with the comments present in the beginning of the code for the variable, in
the equation file. This comment is therefore relevant to be properly maintained, because it will be
transferred in all the documentation of the model.

The other two buttons provide the links of the variable (or of the parameter) to the other
elements of the model. (List Vars. using ’X’ shows the list of the variables using X in their code.
List Vars/Pars used in ’X’) provides, respectively, the list of elements used in the equation for X.
Finally, the button See code shows the very code for the variable in a new window.

people reading a paper based on the results of a simulation model are sceptical since it is
very difficult to understand the code written by someone else (and frequently people cannot even
understand their own code after months they have written it). The solution is to fully document
the simulation program, including comments explaining what the code does, why those initial
values have been chosen, and how the elements of a model interact together. Of course, this is a
tedious work, that hardly any modeller does. LSD tries to obviate to this problem providing a fully
automatic documentation of models providing a sort of “manual” for each model that immediately
permits to understand the code and the working of the model.

Each element of a model (object, variables and parameters) is endowed with a textual docu-
mentation, called description, that modellers can use to describe what the element does. For the
modeller it is therefore easy to sketch out in few words for each element the description of each
element. Moreover, LSD does part of the job automatically, obviating to the lack of documentation
from lazy modellers. Let’s see how LSD generates the model documentation automatically.

Use menu item Model/Generate Automatic Descriptions (and subsequently choosing All elements).
The system scans all the model elements and the equations’ code and allocates the resulting
information for each and every element. The information differs for different elements, indicated
below:

116

6.18 LSD Automatic Documentation asda 117

• Object: Include the list of the equations where the name of the object appears (for example
because the variable creates or destroys the object).

• Variable: If exists, copy in the description the comment written by the modeller in the very
first lines of the code for the equation of the variable. Then include the list of variables whose
equation contains the name of the variable, typically because they use its value.

• Parameter: Include the list of variables whose equation contains the name of the parameter,
because they use its value.

Besides the description, parameters and any other element that need to be initialised15 are also
endowed with a text document describing how the values for the elements have been decided.

The elements’ descriptions (and the comments on the initialization) appear in the options’
window of the model elements activated by clicking on the element label in the Browser (see fig.
4.5 at pag. 44). In this window it is also possible to gather other potentially useful information
concerning an element, like the code of the equation for a variable, or the list of the elements used
that can be used to open these elements’ option window.

These LSD interfaces and texts allow a very easy way to comprehend how even a large model,
with many elements works and is simulated. However, it is also possible to export all this infor-
mation in a standard HTML document, called Model Report, that allows an exploration of the
model using a standard HTML browser (i.e. Netscape). To create the model report for your
model use menu item Browser/Create Report. The Browser will open window like the one depicted
in fig. 6.11.

Figure 6.11: Options for the Model Report

This window permits to set several options, for example including an external file with comments
on the aim and the results of the model. However, most of times the default options should suffice.

Pressing Ok will start the creation of the report. At the end of the process the system will start
your default web browser to open the report (see the next paragraph for the use of the Model
Report).

Notice that the operation of updating the description of the variables of the model costs just two
clicks of the mouse, and the same applies for the creation of a new report. Therefore, this document
is also a very useful tool for modellers when they are revising a model editing the equations in
order to control for possible conflicts with other elements of the model.

15We will see in a moment that some variables need to be assigned one or more values in order to start a simulation.
These are the variables that are used with past values in some equation, and that, therefore, in the very initial steps
of the simulation require user-defined values for “negative” time steps.

117

asda 118 Implementing LSD Models: Example 2

6.19 Using the Model Report

Figure 6.12: Example of Model Report

Fig. 6.12 shows a portion of the Model Report for the model developed until now. The Model
Report is opened using the menu item Help/Model Report.

The report is composed by four sections reporting different types of information concerning the
elements of the model, each of which is linked to the others with hyperlinks in order to easily move
around the report.

The sections, whose beginning can be reached clicking on the header bar of the document,
contain the following information:

• Description: If exists, this section includes a text describing the model or any information
the modellers considers relevant for the users. Our Model Report lacks, for the moment, a
description section.

• Summary: This section begins with a textual representation of the objects forming the
model. The labels of the objects can be clicked to reach that object’s sub-section. Then
there are the sub-sections for objects, each formed by a table whose columns report:

1. A link to the beginning of the subsection to the same object

2. The label of the parameters and variables in the object, which is also a link to the row
of the same element in the section Detail.

3. The text forming the description of the element and, if exists, the text commenting the
initial values for the element.

• Initial Values: This section begins with a textual representation of the objects forming the
model. The labels of the objects can be clicked to reach their sub-section. Below are listed
the sub-sections for the objects, each formed a label of the objects and the number of copies
for that object in the model, and by a table whose columns report (only for parameters and
variables requiring initial values):

1. The label of the parameters and variables in the object, which is also a link to the row
of the same element in the section Description.

118

6.19 Using the Model Report asda 119

2. The values used to initialise the element for a simulation run.

• Details: This section begins also with a textual representation of the objects forming the
model, which can be clicked to reach their subsection in this section. Then there is the list
of elements reporting the most detailed information, which differ depending on the nature of
the elements (any element cited is a link to its cells in the summary section):

– Objects: the detailed description of objects report the object that contains it; the list
of objects contained; the list of variables; and the list of parameters.

– Variables: the detailed description of variables contain: the label of the object that
contains it; the list of the variables and parameters used in the equation for the variable;
the list of the variables whose equation makes use of its values; two links to the sub-
section for the variable in sections Summary and Initial Values16; a link to the
beginning of the section Summary. Eventually, this subsection contains also the code
for the equation of the variable (whose quoted model elements are themselves links).

– Parameters: the detailed description of parameters includes the link to the object con-
taining the parameter; the list to the variables that use the the values of the parameter;
three links to the sub-section for the parameter in section Summary, to its sub-section
in section Initial Values, and to the beginning of the section Summary.

The Model Report provides not only all the information concerning the elements of the model,
but also how they are connected, thus providing a useful guide on how, for example, changing an
equation affects the model. Moreover, the report provides readers of a model with the complete
knowledge concerning the model components and how it has been implemented and initialized, all
in a very easy to access manner. Ideally, modellers presenting the results obtained via simulation
could distribute the model report in order explain readers the inner mechanism of their model,
without requiring a full immersion in the whole code of the model program itself.

The Model Report is extremely useful to be kept updated during the development of the model.
All the descriptions of the model elements are stored in the configuration files, and therefore loaded
and saved together with the configuration itself. When a new elements is added to the model (i.e.
a new variable with its equation) it is enough to add the description of the new element in the
configuration and re-create the Model Report.

16This latest link exists only if the variable requires initial values.

119

asda 120 Implementing LSD Models: Example 2

120

Chapter 7

Example Models

[to be completed]

7.1 Logistic chaotic model

[to be completed]

7.2 Spatial market model

[to be completed]

7.3 Moving snake model

[to be completed]

7.4 Financial market model

[to be completed]

7.5 Business plan assessment

[to be completed]

7.6 Network externality model

[to be completed]

7.7 Nelson and Winter (1982) model

[to be completed]

7.8 Lotka Volterra model

[to be completed]

121

asda 122 Example Models

7.9 Richardson’s dynamic competition

[to be completed]

7.10 Percolation model

[to be completed]

7.11 Social network model

[to be completed]

7.12 Bounded rational demand

[to be completed]

7.13 NK fitness landscape

[to be completed]

122

Part III

LSD Manuals

123

Chapter 8

LMM interfaces

LMM is an auxiliary program supporting the management and constructions of LSD models. The
most frequent activities done using LMM are: identify the model to work with (or create a new
one), write the code for the equations of the model, set the options to be passed to the compiler,
and run the LSD model program. LMM is not essential to generate a LSD model program; any editor
can be used to write the equations’ file, and the LSD model program may be generated using a
standard makefile. However, LMM simplifies sensibly the usual activities, besides providing other
functionalities similar to those provided by an IDE.

Figure 8.1: LSD Model Manager - LMM

The section documents in detail all the functionalities provided by LMM. The first paragraph
below describes the features for the editing environment, while the following describe the menu
entries as they appear in the LMM window.

125

asda 126 LMM interfaces

8.1 Editor features

The LMM window contains e menu row, a header, and a main editing window. The header indicates
the group and the model currently used by LMM, and the name of the file loaded into the editor.

The LMM contains a standard editor for text files. The editor admits all the standard features
concerning selection and movements across the text1, like Ctrl+arrow to move the cursor across
whole words or paragraphs.

The text for C++ files is colored in blue for strings of characters (recognized by the double-
quotes) and green for comments. Moreover, the editor is endowed of with some event-driven
functionalities and shortcuts to frequently used commands.

8.1.1 Click with the right button of the mouse

Right-clicking on a text makes a small menu appear, referring to the position of the text cursor
where the mouse cursor is located.

Figure 8.2: Right-clicking on the editor generates a short menu.

The commands offered by the menu depend on the position of the mouse pointer when the
right button have been used. Most of these functions are identical to the equivalent commands
accessible through the standard LMM menus. The Place a break and run gdb has an additional
features. Besides running the gdb debugger on the model, it also places a break in the line
indicated by the mouse when right-clicking the text. This will cause the model to be executed and
the simulation will be interrupted at the break line.

8.1.2 Insert LSD Script

Pressing the key combination Ctrl+i the system will insert in the text at the position of the cursor
one of the most frequently used commands for the equations. The resulting window can be operated
with the arrows and offers users context-dependent help on the different commands, as well as
suggesting default values.

8.2 Menu File

The standard menu File allows to open, create and save the text files loaded into the LMM editor.
Unix and MacOS users have also a menu entry allowing to set options for the external programs

to be used as terminals (required for the gdb program, see menu entry Model/gdb Debug) and the
web browser, used for the manual pages.

8.3 Menu Edit

The menu Edit offers the usual editing functions, plus special functions dedicated to the generation
of C++ code.

1Some of these features depends on the operative system used, and may vary slightly.

126

8.3 Menu Edit asda 127

Figure 8.3: Pressing Ctrl+i the system automatically inserts one of the most frequently used LSD

commands at the cursor position.

8.3.1 Go to line (Ctrl+l)

Moves the cursor to the text line indicated by the users.

8.3.2 Match {} (Ctrl+m)

When the cursor is position just before a curly bracket { or }, this command scans the matching
bracket, discounting the nested brackets.

8.3.3 Match () (Ctrl+p)

As the command Match {}, but concerning parentheses.

8.3.4 Insert { and Insert } (Ctrl+(and Ctrl+))

Insert curly brackets in the text, useful for keyboard layouts missing these symbols.

8.3.5 Wrap/Unwrap (Ctrl+w)

This command alternates the text between being entirely contained in the horizontal width of the
screen, or extending beyond the borders for long line. The wrapping concern only the visibility,
and does not affect the actual content of the text file.

8.3.6 TkDiff

This entry run a program comparing different text files (supposedly different versions of the same
file) highlighting differences between them.

8.3.7 Compare models

This command allows to select two files from different models, and launches the TkDiff with the
two equation files.

127

asda 128 LMM interfaces

8.4 Menu Model

This menu contains the commands concerning the model currently loaded in the LMM, if any
(otherwise, most of the commands are not active).

8.4.1 Browse Models

Open the interface to select the model to work on, or to create a new model.

Figure 8.4: Menu Model/Browse Models activates this interface to select the model to work on, or
to create new models.

The model browser allows to move across the models available in the disk where LSD is installed.
Models are defined within Group’s, that is, directories, which can be explored with the arrow keys
and pressing Enter, besides clicking with the mouse. Entry <UP> moves the browser to show the
models and groups in the upper directory.

Besides selection, menu Edit allows to create a new group or model. From this menu it is also
possible to Copy a model, which can then be Pasted in another or the same group. When creating
a model the user is requested to provide a name for the model (a few strings), and the directory
name associated to the model. Obviously, the name for the directory must be non-existent and
must contain only non special characters (i.e. no spaces, quotes, etc.)

8.4.2 Compile and Run model

This entry actually executes three different operations in sequenct. Firstly, it controls whether
the text currently shown in LMM has been saved on the disk, comparing the text in the editor
with the content of the file. If the text and the file differ, LMM offers the option to save, since
the compiler reads the file, not the content of the LMM editor. Secondly, after this control LMM
generates the LSD model program concerning the model. This process entails the constructions
of the compilation instructions concerning the system code and the model-specific code. The
compilation may fail because the equation file contains illegal code; in this case LMM shows the
list of errors as recognized by the compiler.

Each line from the list of errors refers to a line in the equation file (that can be reached with
Ctrl+l). In figure 8.5 the compiler found two errors. At line 13 there is a call to command VL(...)

containing only one field and not two, as expected. Moreover, at line 17 the compiler gave up
waiting for the semicolon ; ending a command, which actually should have been placed at line 15.
This second error is a typical case in which the error occurred not in the line indicated but the
preceding one. The window with the list of compilation error can be closed and re-opened using
the LMM menu entry Menu / Show Compilation Results.

If the compilation succeeds LMM returns available and the newly compiled LSD model program
is automatically executed.

128

8.4 Menu Model asda 129

Figure 8.5: Window showing compilation errors as passed by the compiler. Each line refers to a
line of the equation file, indicated by file name (fun sd.cpp in the example) and the line number
where the error was recognised.

8.4.3 GDB Debug

The gdb debugger is a program allowing users to execute a C++ compiled program line-by-line,
normally used to investigate unexpected behaviours of a program. The gdb debugger is a command
line program, whose main commands are described in the on-line help of the relative section in the
LMM help.

This command runs the command-line GDB debugger loaded with the existing LSD model
program. Notice that this command does not compile the LSD model program. Therefore, users
must be sure to compile and run the model, then close the automatically run instance of the LSD

model program, and only then run gdb.

Notice that for gdb to work properly it is necessary to compile the model with specific options.
In LMM you can use the menu entry Model / Model Compilation Options and then assigns to the
line SWITCH CC=-g.

8.4.4 Show Equation File

This command opens in the LMM editor window the equation file used for the model. Users
working on a model should always use this command to ensure that the file they are editing is the
actual file used to generate the LSD model program. Obviously, renaming the file opened by the
Show equation command should never be done, since the saved version is not used for the generation
of the LSD model program.

8.4.5 Show Makefile

This command shows the makefile concerning the loaded model. This command is used only for
reading the content of this file, which contains the complete set of instructions required to compile
and generate a LSD model program. This file should not be edited, since the makefile for any
compilation (Model/Run model) is re-created any time it is requested. Therefore, changes to one
copy of the makefile have no effect.

To change the compilation options, see the compilation options, in this same menu Model.

129

asda 130 LMM interfaces

8.4.6 Show Compilation results

This commands shows the error messages generated by the latest attempted compilation, in case it
failed. The errors are listed by line numbers on which the compilation identify an error. Normally,
the actual error is located just before the line numbers indicated in these error messages. See
paragraph 8.4.2 for details.

8.4.7 Show Description

This command opens the text file containing the description of the model. Its name must not
be modified. The model description is a user-generated text presented at various occasions when
the model is observed by users, such as while browsing models and as header of the automatically
generated model documentation. Normally, it should contain a summary of the aims and content
of the model.

8.4.8 Model Info

This command shows the name of the model and its version number (which is associated to the
name), allowing the users to modify it, permanently. Also, the user can observe, in read-only, the
date of creation and last modification of the model’s equations, along the full path of the directory
containing it.

8.4.9 System compilation options

This command shows the section of the makefile concerning the options used to compile the LSD

model program. Changes to these options concern the way all the LSD system code is treated,
leaving untouched the way to compile the equations’ of the model.

The options are expressed in terms of variables used in the makefile. These variables concern
the location of libraries and files necessary for the compilation, as well as options on the type of
executable to generate.

Users may have three reasons to edit these options. In case of installation problems, (i.e. failures
to compile because errors not located in the model equations’ file) they need to change one or more
of the variables indicating the location of the necessary libraries and other files.

The second reason is to generate different types of optimized code. This choice is operated
setting to different values the variable SSWITCH CC.

The third reason is to link the executable to an external library. This option can be operated
extending the EXTRA PAR content.

8.4.10 Model compilation option

This command changes the compilation options specific to the LSD model program currently loaded
in LMM. Three options are permitted: the name of the executable; the name of the equation file
to be used; and the optimization options. For the latter use: SWITCH CC=-O3 for fastest code and
SWITCH CC=-g to use the gdb debugger.

8.4.11 Generate a ’NO WINDOW’ makefile

This command generates within the directory of the model a reduced distribution of the current
installation (i.e. the files in directory src) and of the model file that can be compiled using
exclusively pure C++, omitting the graphical libraries used for the windows of LSD model programs.
Versions compiled with these options can be compiled on any super-computing machine.

Compiling this reduced version generates a version of the model that is not able to create
configurations, but only to execute simulations, even in batch mode. In this latter case at the end
of each run the model saves all results in a result .res file before starting a new one, so that users
may leave the program to run and collect later the results (including the .tot result files).

The NO WINDOW version needs to be compiled at command line, using the associated makefile
named makefileNW. The resulting executable can perform two different types of batch runs. Firstly,

130

8.5 Menu Help asda 131

it is possible to run many repetitions with the same identical configuration and changing the pseudo
random numbers. Secondly, it is possible to use a sequence different configurations.

In both cases it is necessary to prepare the configuration files for the batch runs with a normal
version of the LSD model program. For multiple repetitions of the same configuration just pre-
pare the configuration and specify the number of simulation runs and the initial seed. Save the
configuration and run the NO WINDOW LSD model program from command line as follows:

$./lsd_gnu -f sim.lsd

This will execute the configuration in file sim.lsd as many times as indicated in the configu-
rations. The results will be stored in files simX.res where X refers to the seed value used for the
configuration. Moreover, the final values from each run will be aggregate in a special result file,
sim.tot, where the “step” refers to different simulation runs.

The second version of the command has the format:

$./lsd_gnu -f sim -s 1

(where 1 can be replaced by any positive integer) the program expects to find many configuration
files starting from sim1.lsd, sim2.lsd, etc. The program will execute all configurations as indicated
by the number of repetitions in the very first configuration file, using the increasing indicators. Also
in this case the results are saved independently from each tun and collectively in the .tot file.

8.5 Menu Help

This menu provides help pages for LMM and for the general use of LSD. The three entries in the
menu concern help pages on LMM, the list of all the functions available to write LSD equations,
and documentation on LSD. In particular, a set of slides form a course on LSD use starting from
lessons for beginners in simulation and providing several examples for most LSD function.

131

asda 132 LMM interfaces

132

Chapter 9

LSD model program interfaces

The LSD model program is a stand-alone executable containing the compiled version of the equation
of the model. The LSD model program allows users to perform every function concerning the model
besides changing the equations: create the structure of a model, insert numerical initializations
and simulation options, run simulations, analyze the results, etc.

This section lists all commands provided by the interfaces, which change in accord to the content
of models and to the operation currently performed by the user.

9.1 Browser window features

The browser window shows the content of one single type of object in the model and includes all
commands necessary to define, modify and exploit a LSD model program.

Figure 9.1: The browser window is the main interface of a LSD model program. It shows the content of
one object and gives access to all commands to the simulation program, like defining a model, initializing
its elements, or run a simulation.

The left-hand list shows the variables, parameters and functions contained in the object. The
right-hand window shows the descendants, that is, the objects contained in the object. On the top
of these two lists, the browser shows the name of the object shown, and the parent object of this
object. Clicking on the descendants the browser moves to show the selected object, while clicking
on the parent object the browser moves to show the parent object. It is possible also to use the
arrow keys to move across the labels of the objects. The key u shows the parent object.

133

asda 134 LSD model program interfaces

The browser window, besides its menus, allows observe and edit the elements contained in the
object, by double-clicking, respectively, on the label of an element in the left-hand list, and on the
label of the shown object.

9.1.1 Moving elements

Within both the list boxes for variables and descending objects it is possible to change the order
of elements of the elements using the arrow keys up and down while pressing the control key. The
order of the elements normally does not modify the computational content of the model.

9.1.2 Options for an element

Clicking on an element in the Variables list (variables, parameters or functions) the window changes
to show the possible options concerning that element, as shown in figure 9.2.

The top part of the window is a a header indicating the nature (i.e. variable, function or
parameter) and label of the element, besides the object containing it. Double-clicking on the label
of the element it is possible to edit its label, or change its nature, for example, turning it from
a variable into a parameter. It is also possible to change the position of the element, choosing a
different object. Finally, assigning a new empty label to the object the element will be removed
from the model.

Below the header there are up to four check boxes. The option Debug mark the element to
be debugged, meaning that when the simulation is run in debug mode (see below), the simulation
will be interrupted showing the state of the model at the very end of the computation of the
equation for the element marked as debugged (if any). This option appears only for Variables
and Functions.

Figure 9.2: Options for an element, activated by double-clicking or pressing enter on the element’s
label.

There are several modes to activate the debug mode. Users can set the time step at which the
debug mode must be activated (in either the Simulation Settings before running a simulation, or
the button Until in the debug module). Otherwise, users can press button Debug in the log window
at run time. In any case, when in debug mode, the simulation will be interrupted when the first
element marked as being debugged is computed.

134

9.1 Browser window features asda 135

Option Save impose the system to store every value at each time step to be saved for analysis.
Elements with this option unchecked will loose their values as soon as they are no more needed
(normally, the subsequent time step of their computation).

Option Save in a separate files each series will store the values for this element in a separate file
labeled after its name and a code referring to its position in the model structure.

Option Run Time Plot set the element’s values to appear in the dynamic Run Time plot graphical
representation while running the simulation.

Button Continue confirm any change made to the options and return to the browser.

Button Cancel reject any change made to the options and return to the browser.

Button Help opens the help page for this window.

The text window entitled Description of the ... can be filled with any text documenting the
element, supposedly explaining its meaning to readers of the model documentation. See the button
Auto Docum. below.

The option Observe allows to include the elements whose results should be relevant to observe
my the model users.

The option Initialize is present only for the elements admitting initial values, that is parameters
or other elements defined as being used with a lag. This option allows to include the element within
the set of elements whose initialization is relevant for the model.

The button See code is present only for variables and functions. Press this button generates a
new window containing the code of the equation for the element.

Button Auto Docum. fills the text for the description of the element. The text inserted depends
on the nature of the element. If it is a Variable or a Function, it is the text contained in
the first lines of comment present in the equations’ code immediately after the beginning of the
equation’s code. This comment is supposed to contain the relevant description for the element.
For any kind of element, including parameter, the text is completed with the list of elements (if
any) whose equations contains the element shown. This information is assumed to be relevant as
documentation to understand which part of the model is affected by this element, but does not
affect the model results

Button List of vars. using ’...’ generates a list of the elements whose equations make use of this
element. This list can be clicked to move the browser to the elements selected.

Button List of vars./pars. used in ’...’ generates a list of the elements appear in the equation’s
code code for the element. This button appear only for variables and functions.

The final text window appears only for elements that may be initialized, like parameters and
other elements declared with a lag. The text contained here describes how the element has been
initialized. By default, the initialization functions fill automatically this window.

9.1.3 Objects’ options

Clicking on the label of the object in the main LSD browser (figure 9.3) it is possible to change the
name of the object or, assigning an empty label, to delete the object from the model. Removing
the object removes also all the descending objects.

Figure 9.3: Options for an object, activated by pressing the label of the object shown by the LSD

browser.

135

asda 136 LSD model program interfaces

The check box Compute (set on by default) allows the LSD simulation manager to visit the
object at every time step and compute the variables contained in the object. Checking off this
option prevents the LSD simulation manager to update automatically the variables contained in
the objects, including also the variables in the objects contained in the object. As a consequence,
the simulation will be faster, but the modeller must ensure that, if any variable is contained in
the object or its descendants, they are updated because explicitly triggered by the code for other
equations. Moreover, any element contained in the objects not visited by the LSD simulation
manager will not appear in the elements saved for analysis of results, even though they have been
marked to do so.

The text section in the option window defined as Description of object ... can contain any text
describing the object, which will be used for the documentation of the model.

9.2 Menu File

The model contained in a LSD model program can be stored in a file to be later reloaded. These
files, called configuration files, store every relevant information containing the model. Loading a
configuration file restore the LSD model program in the same conditions as when the file had been
saved (aside possible simulation results, if any).

The menu File concerns the opening and saving of configuration files. Note the Re-load, with
its shortcut Ctrl+w. This command loads the configuration with the same name as that currently
loaded into the LSD browser. This is mostly used at the end of a simulation run to reload the
configuration and run another simulation, possibly after editing the initial values or other settings.

9.3 Menu Model

This menu allows to modify the structure of the model, for example, adding elements to the object
shown in the browser. This menu should be used only when building a model; data and simulation
options are controlled by the other menus.

9.3.1 Add a variable (Ctrl+v)

Add a variable to the object shown in the browser (figure 9.4). Variables are elements associated
to an equation, which is used at each time step to compute a value for the variable.

Figure 9.4: Adding a new variable to an object requires the label of the variable and a number of
lags.

New variables are inserted by assigning a label and a number of lags. The label must be a text
string without special characters, as spaces, quotes, etc., and must not be used elsewhere in the
model. The label must match the variable’s equation headers, and the matching is case-sensitive
(i.e. X is different from x). When the variable is created it is not necessary that the corresponding
equation already exist, but the model can be successfully executed only if the LSD model program
is compiled with the equations for all the variables and functions declared in the configuration.

The number of lags must be the highest lag by which the new variable is used in some equation
of the model. If, for example, the variable value is never requested by other equations with its past
values, then the number of lags can be zero. Conversely, if the model includes an equation where
the new variable must provide its past value (at time t − 1), then, the number of lags must be 1.
If it is requested with its values at time t− k, then the number of lags must be k.

136

9.3 Menu Model asda 137

Notice that variables declared with lags must be provided with initial data, that is, the values
to be used in the earliest time steps as past values, which would refer to a negative time.

If a variable is declared with a number of lags smaller than those used in the model’s equations,
the simulation run will be interrupted and generate an error. In these cases, it is possible to edit
the variable’s definition accessing the variable’s options, and change its nature by clicking on the
variable labels.

When inserting a new variable it is possible to provide a textual description of the variable,
although this information is generally provided automatically using the text inserted in the equa-
tion’s code (see the section on elements’ options 9.1.2). The elements’ descriptions are used for the
various forms of documentation of a model.

9.3.2 Add a parameter (Ctrl+p)

Add a parameter to the object shown in the browser. Parameters are elements that do not change
value of their own accord during a simulation run, although they can be written over by the code
of some equation. Parameters can be saved as sequences of values, to be used in the analysis of
results, if this makes sense.

The label of a parameter must be a string without special characters. As for variables, a textual
description may be provided.

9.3.3 Add a function (Ctrl+n)

Add a function to the object shown in the browser. Functions are like variables, but for a crucial
difference. Both functions and variables are associated to equations that compute their values.
The difference is that variables are computed always once, and only once, at each time step, and
the system ensures that this happens under every possible circumstance. Instead, functions are
computed (i.e. their equation is executed) only, and every time, the function’s value is requested.
Therefore, a function may have its equation computed several times or never within a time step,
depending on the calls by other equations, while a variable has its equation executed once and only
once at each time step. In a sense, variables are used to time-driven dynamics, taking new values in
synch at each time step, while functions are used for event-driven dynamics, when a computation
is triggered by other events. In LSD models the two approaches are normally used in the same
model, using the most appropriate for each part of the model.

Functions can be declared, like variables, with lags. However, the “past” values of functions
do not refer to the number of previous time steps, as variables, but to the number of previous
activations of the function. Variables cannot be saved, as they do not produce meaningful time
series.

9.3.4 Add a descending Obj. (Ctrl+d)

Add a new type of object to the object shown in the browser. The new (empty) object will be
located as contained in the object shown by the browser. The label of the object must be a string
without special characters.

9.3.5 Insert a new parent

Insert a new object above the currently shown object, so that the latter will have the new object as
parent. For example, if object A contains object B, and this command is used when the browser
shows B, the new object will be located as contained in A and will contain B.

9.3.6 Change obj. Name

Modify the label of the object shown by the browser. Inserting an empty string delete the object
from the model.

137

asda 138 LSD model program interfaces

9.3.7 Set equation file label

Define the file name of the equation file. This field is automatically filled by LMM when generating
the LSD model program, and it is subequently stored in the configuration file, normally transmitted
in different configuration files without need for the user to change it. The file name is used only for
presentation purposes, in that the LSD model program cannot modify the equations of the model.
The equation file is used to generate the automatic documentation.

9.3.8 Ignore equation file controls

A copy of the equation file is contained in the configuration file, and it may be compared with the
actual equation file of the model. If this option is not checked, the LSD model program compares
the equation file of a configuration with that of the actual equation file. If the two files differ, a
warning is issued.

9.3.9 Upload equation file

Store in the current configuration the equation file present in the model directory. This file is used
only for presentation and control, not for actual computations.

9.3.10 Offload the equation file

Generate a new file exporting the part of the configuration containing the equation file. This
command is used to transfer a model, by sending only the configuration file and, with this command,
re-creating the equation file.

9.3.11 Compare eq. files

Generate a temporary file with the equation file stored in the configuration file, and compare (using
TkDiff) this file with the actual equation file present in the model directory. TkDiff highlghts the
difference in two text files, smartly managing lightly modified texts.

9.3.12 Generate automatic documentation

Any element in a LSD model is associated to a text that the modeller can use to document that
element. This text is then used for the model report and, in any case, store in the configuration
file for potential users of the model.

However most of the descriptions’ content can be automatically derived, or copied from pre-
viously written text. Using this command the system deletes the description of the elements and
replace them with the automatically generated ones.

For variables and functions the description is copied from the earliest commented lines located
in the equation file, just under the line stating the beginning of the equation for that element.
Normally, this is the very only text that modellers need to write (and keep updated) concerning
an element.

For objects and parameters the system reports the list of the elements whose equations include
the label of the object or parameter. This last part of the description is optional, so that users
may update only the text associated to variables and functions.

9.3.13 Create report

Generate automatically the LSD model report, a documentation of the model in HTML format that
links together all the information on the model elements and their interactions. See the paragraph
on menu item Help/Model report for more details.

The report is given by default the title, as well as the file name, of the the configuration currently
loaded. Users can choose different titles and different file names to store the report. The report
contains several lists of elements. When creating the report it is possible to choose between lists
presented as pull-down menus or simple lists of links. Moreover, the report normally includes an

138

9.4 Menu Data asda 139

Figure 9.5: Creating a LSD report the user can set a few options concerning the report naming and
additional files to insert in the report.

introductory text, and the user can choose whether to use one, two, or no file to copy the text
from.

9.3.14 Create LaTex report

This commands generates a report in Latex format. These reports contain the same information as
the LSD reports, but for the sets of initial values used. Latex reports are composed by sets of tables
in Latex format containing the list of elements for each object, and the documentation for each
element. Latex report should be edited as appropriate, and then inserted in a Latex document.

9.3.15 Find an element of the model (Ctrl+f)

Search the model with an element with the specified label. The browser will show the object
containing the element.

9.4 Menu Data

This menu contains the commands related to the numerical content of the model. The data
concern the initialization of the model before a simulation run, the analysis of results produced by
a simulation run, and the observation of the current state of the model.

There are two types of data necessary to execute a simulation run and that can potentially
affect the results. First, the user needs to specify the number of each type of object. Second,
numerical values must be assigned to all the elements requiring a value at the start of a simulation
run, i.e. at t=1: parameters, lagged values for variables and functions.

Below we list the different commands present in the menu and describe in detail the use of the
modules triggered by those commands

9.4.1 Set number of objects (Ctrl+o)

This command allows to define the number of objects in the model. There are two options available.
The first option (All types of objects) allows to determine the number of objects for the whole
model structure. This command permits to customize potentially complex model structures, such
as diverse numbers of objects for different branches of the model. For example, in a model with
objects Market containing sets of objects Firm, allow to define many Market ’s, each containing
a different number of Firm ’s.

The second option (Only current type of objects), allows to determine only the number for all
the groups of objects of the same types as the objects shown in the browser. This second option
is obviously more limited, but it is much faster to implement, and it is the only practical way to
define very large number of objects whose sheer number would crash the initialization interfaces.

139

asda 140 LSD model program interfaces

Notice that for very specialized initialization there is a third way to solve the problem of complex
initialization. In many models it is possible to devote a LSD variable to implement the initialization.

See the section on 9.7 (p. 145) for the use of the module on setting the number of objects.

9.4.2 Init. values (Ctrl+i)

The initial values necessary to start a simulation are the values of parameters and lagged variables
(and functions). Lagged elements require at least one value because they are requested in the
equations with a lag, that is, for example, with their value at t − 1. At the very first step of
the simulation (t = 1) it is obviously not available any value for previous (non-existent) step and
therefore the system needs the modeler to provide these values. If a variable or a function is used
with more than one lag, then the modeler must provide as many values as the lags.

Using this command the user activated a module of the LSD model program allowing to set
the initial values for all the necessary elements contained in all the copies of one object type. See
paragraph 9.8 (p. 147).

9.4.3 Sensitivity (parallel)

The goal of sensitivity analysis is to replicate a given simulation run (i.e. a model with the same
setting) many times, where each simulation run differs from the others for the values of of one or
more elements to initialize, including the random number generator.

There are two types of sensitivity analysis: parallel and sequential. In the first case the tree of
a model is multiplied in many copies each containing one parameters configurations to test, and
therefore executing in a single run all the desired tests. This is the most efficient way to test many
different configurations, but obviously impose limitations on the dimensions of the model and/or on
the number of tests. In the sequential case the system generates many distinct configuration files to
be uploaded and executed independently. In this second case the most logic application is to run the
program from command line with the options to execute sequentially all the configurations. This
way is possible to test very large models in any number of configurations, as it is also applicable
on systems lacking graphical interfaces as those for super-computing.

The first step to make sensitivity analysis on a model is to decide the parameters you want
to vary. They’d better be contained in the top-most object of the model, but must NOT be
contained in Root, since this is the only object which cannot be present with multiple copies.
For example, suppose you want to test a model configuration varying two parameters with the
following values: A ∈ [1; 2] and B ∈ [2; 3; 4]. Open the Init. values page for the object containing
the parameters and use the Set All button for each of them. In the resulting window select the
method Sensitivity indicating the number of values you want to test: 2 for A and 3 for B. When
you click Ok on that window a new text window appears, where you have to place the values you
want to use, with any separation you want (space, newlines, comma, etc.); you may also paste
values copied from somewhere, such as text editor or a spreadsheet.

After having assigned the initialization in this way, the configuration has not apparently
changed, but it is ready to accept one of the two commands in menu Data : either Sensitivity
(parallel) or Sensitivity (sequential). If you choose the first option the system automatically
generates as many replicas of the model each with a different combination of the data inserted, in
our case 6 (2x3) different copies.

You can generate combinations of as many initializing elements as you want, just beware of
memory limitations. For example, a model where 5 parameters are tested each with 10 values
produces would produce 100,000 combinations. Of course this is feasible only for models of limited
dimensions, otherwise one needs to use the sequential option where each the different configurations
are executed sequentially saving data for later (collective) analysis.

If the model must be tested against randomness it is sufficient to replicate the same values
for the parameters initialized for sensitivity. For example, setting A for 20 values it is possible
to provide: [1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2]. This will cause to produce effectively two distinct
configurations, one with A = 1 and the other with A = 2, but each of those will be replicated 10
times using different random values.

140

9.5 Menu Run asda 141

9.4.4 Sensitivity (sequential)

This option performs the same function as for the parallel case, but instead of generating a single
configuration with multiple copies of the model structure, it generates multiple configurations each
with the same model structure and with the different parameters combination. The resulting set
of files can be used to run LSD in batch mode (see paragraph 8.4.11, p. 130) to be executed
sequentially with separate result files generated at the end of each simulation run.

Contrary to the case of parallel simulation run, this method poses far less dimensional con-
straints on the simulation model.

The use of this command will also generate a text file (named sensitivity sq.txt) reporting
the elements used for the initialization, including how many values and the list of values for each
element.

9.4.5 Analysis of Results (Ctrl+a)

This command activates the module Analysis of Results that allows the user to analyse the results
of simulation runs. The data may come from the simulation just finished, from previously saved
simulation results, or both. The module is very efficient being able to manage huge datasets
and provides essential manipulation of data, such as graphical presentations and a few descriptive
statistics.

See the section 9.9 (p. 150) for details the module of Analysis of Results.

9.4.6 Save Results (Ctrl+z)

This command generates a LSD result file containing all the values saved during a simulation run.
Users are requested to provide a name, to which the system attach the extension .res. This file
can be loaded into the module Analysis of Results for later analysis.

The command generates also a LSD configuration file (.lsd) with the same name as the result
file, so that the user can store both the simulation results and the configuration that generated
them.

9.4.7 Data Browse (Ctrl+b)

This command switch the browsing of the model from the standard browser to a detailed, object-
by-object perspective. While the standard browser does not show the content and the number
of object types, the data browser allows to navigate the model inspecting each single copy of the
objects, and observe the actual values contained in each element of the model.

The data browse is mostly used at the end of a simulation to inspect the state of the model in
any detail. The interface is identical to the LSD Debugger, but for the commands referring to the
control of the simulation run (e.g. Run, Step, etc.). See paragraph 9.10 (p. 161) for instructions
on the LSD debugger and data browser.

9.5 Menu Run

This menu contains all commands affecting the way a simulation is run not directly referred to the
model content, as the number of time steps, number of simulation runs, etc.

9.5.1 Run (Ctrl+r)

This command starts a simulation run. Before executing the very first step of the simulation
the system writes the configuration file for the model contained in the LSD model program. This
ensures that it is always possible to replicate the same simulation by re-loading the model from
the configuration file. To avoid overwriting an existing configuration file users need to change the
name of the configuration before running the simulation.

The system prevents to run a simulation using a model that just completed a simulation run.
This is because the state of the model differ from its configuration file. If the user wishes to do so,

141

asda 142 LSD model program interfaces

it is necessary firstly to save the state of the model (at the end of a run) as a new configuration,
and then load the resulting file.

Activating this command the system asks for confirmation of the execution summarizing the
action it is going to perform. In case of a single simulation run the results will be stored in memory
only, to be analysed at the end of the simulation with the analysis of result module. In case of
multiple simulation runs the system will create many files, one for each run, containing the results
for that run.

9.5.2 Set sim. settings (Ctrl+m)

This commands allows to configure options for simulation run not represented within a the defini-
tion or initialization of the model. The available options are the following (see figure 9.6):

Figure 9.6: Simulation options, setting the environment conditions for the model.

Number of simulations This value determines how many simulations must be run in se-
quence. A sequence of simulations consists in many simulations run with the same configuration
but using different sets of random numbers. Multiple simulation runs are therefore used to test
the robustness of results against variations due to random events.

If this option indicates a single simulation run (value 1), then the system will execute the
simulation and, at the end, will retain the simulation results in memory, to be analysed by the
Analysis of Results module. If more than one simulation is requested the system produces the
first simulation, saves the results in a LSD result file, re-load the configuration and execute again a
simulation run after increasing the seed for the pseudo-random number generator, in effect using
a different set of random values.

The result files saved during multiple simulation runs are labeled after the configuration file,
extended with the number of the pseudo-random seed generator. Therefore, any simulation saved
during a multiple run can be reproduced using the configuration and the seed indicated. For
example, if the configuration contained in the file MyConfig.lsd is defined to run 10 simulations
with initial seed 2, the simulation results will be stored in files named from MyConfig 2.res to
MyConfig 11.res. The result files can be loaded collectively in the Analysis of Results module
analysing single simulation runs or comparing the patterns across different runs.

Collective simulation runs generate also a file (named after the configuration and extension
.tot) containing the very final value for each element in each line, and as many lines as the number
of simulation runs. This file can be loaded also in the Analysis of Result module, although for this
case the “time steps” will actually refer to different runs.

It is worth notice that multiple simulation runs are rarely necessary in LSD. Robustness against
random variations may be produced simply multiplying the number of objects in the model. Mul-
tiple runs are necessary only when the model dimensions are so large that they wouldn’t fit in the
computer memory, but are small enough that it is not worth to run in batch mode.

Initial seed The random numbers used in stochastic simulations are in effect pseudo-random
values generated by means of deterministic functions. This functions produce sequences of values
that have the statistical properties of the random function requested. The seed for pseudo-random
functions initialize the function so that it will generate a given series of (pseudo-)random values.

142

9.5 Menu Run asda 143

Using twice the same seed will therefore generate the same series of values. When a simulation
starts the LSD model program initializes the pseudo-random functions with the seed specified in
this box. Therefore, the same model using the same random values will replicate exactly the same
result. Using different seed will instead use different pseudo-random values.

Simulation steps Number of time steps to be executed in the simulation run. Note that the
modeler may use a command in the equations to close the simulation run in advance, typically
under certain conditions. Moreover, users can choose to stop a simulation run at any moment.

Insert debugger at Indicate the simulation time step at which to enter in debug mode. At the
indicated time step the model will start controlling whether the variables or functions computed
have been marked as to be debugged. If one of these is encountered, the system interrupts the
simulation just at the end of the equation computing the new value for the element. When the
simulation is interrupted in debug mode (which may happen also when an error occurs, such as a
division by zero) the system shows the Lsd Debugger interface, showing every detail of the model
(see paragraph 9.10, p. 161).

Inserting in this box values lesser than 1 or above the maximum number of time steps have no
effect.

Print until stack In some cases, generally for optimizing purposes, it may be relevant to
know the exact order of completion of equations within a time step. This order is determined by
the LSD simulation manager at run time, depending on the state of the model at each time step.
The LSD simulation manager tries to compute the equations for all the variables in any object
of the model, starting from Root, and then going “down” in each object. Normally, equations
for variables contained in “higher” objects are executed before those for variables of lower objects.
However, in some cases this is impossible, since the equations for high objects’ variables necessitate
the updated value of variables contained in lower objects.

An equation (say X) being executed because of normal updating required by the LSD simulation
manager is said to be executed at “stack 0”. If such an equation requires the value of another vari-
able (say Y) not yet updated, the equation for X cannot be completed. It is therefore interrupted
(placed on the stack), and the equation for Y starts to be executed. This latter equation is said
to be executed at stack 1. In turns equations computed at stack 1 may require the values of other
values, which will be produced by equations computed at the next stack.

Reading the print-out of the stacks involved in a simulation step, and the label of the variables
computed, allow to interpret the order of completion the LSD simulation manager managed to find
(among the generally many feasible).

This option allows to specify the “depth” of the stack one is interested to read. Setting this
value at, say, k will generate in the log window a line for each element computed at level k or below.
Each line will indicate various information, including the equation result value, the “triggering”
variable (which variable at stack level k − 1 requested the value) and the identification tag of the
objects containing the variables. Moreover, the lines will also provide the time necessary for the
equation to be completed.

9.5.3 Remove debug flags

Variables and functions marked to be debugged cause the simulation to stop when the debug mode
is inserted. This command removes all the debug marks, or flags, from every element of the model.

9.5.4 Remove save flags

The values generated for any element during a simulation run are normally deleted as soon as they
are no more necessary to compute the subsequent steps. The modellers need to explicitly indicate
which elements’ values need to be saved for post-simulation analysis. This command removes all
the flags for every element of the model possible marked to be saved. If a simulation is run just
after this command, no data will be available for analysis.

143

asda 144 LSD model program interfaces

9.5.5 Remove plot flags

During a simulation run it is possible to generate a dynamic graph for the values of some elements.
Using this command all elements possible marked to be plotted dynamically during a simulation
run are removed, and no dynamic graph, or run time plot, will be produced.

9.5.6 Show elements saved

This command generates a list in the log window for all the elements marked to be saved in the
model. It has no effect on the configuration of the model.

9.5.7 Show elements to observe

Modellers can mark some elements of the model as series relevant to be analysed. This option is
independent from the indications of which elements are actually saved during a simulation run, so
that a modeller may indicate with the observe flags the meaningful elements for the model, while
setting a different set of values to be saved.

This command generates a list in the log window for all the elements marked as worth to be
observed in the model. It has no effect on the configuration of the model, but the list of elements
worth to be observed is given a prominent role in the automatic documentation of the model.

9.5.8 Show elements to initialize

By defaul LSD forces the modeller to assign initial values to all the parameter of the model and all
the lagged variables. However, frequently the initial values for many of such elements have no effect
on the model results, because, for example, the model generate its own “customized” initialization.
The user can indicate the list of the elements whose initialization is mostly relevant for the model
results, as marking them “to be initialized”.

This command generates a list in the log window for all the elements marked whose initialization
is considered as particularly relevant. It has no effect on the configuration of the model, though the
elements marked as relevant to initialize are given a prominent role in the automatic documentation
of the model.

9.5.9 Remove run time plots

The windows containing the dynamic graphs during simulation runs are “sticky” and cannot be
removed by the usual commands for closing windows. This command removes permanently all the
run time plot windows from the screen.

9.6 Menu Help

Users may need assistance on the use of the model in two respects. Firstly, they may need help
on the use of the LSD interfaces, commands, meaning of error messages, and any other possible
aspect of the LSD system in general. Secondly, they may need to understand aspects of the model
not easily accessible by the LSD browser. For the first type of issues the entry LSD help gives access
to the LSD manual included in the LSD distribution. Concerning the information on the model use
the second entry Model Report, which opens the model report for the configuration used.

LSD model reports are HTML files containing all the information contained in the model, pre-
sented in different formats, and enriched by hyperlinks allowing to follow the model description
according to the preference of the reader.

In a model report there is an introductory section, and three sections for as many lists of the
model elements, with links among related elements within the same sections (e.g. parameters used
in an equation) or to other sections (for the same element).

The introductory section includes a textual description of the model and list the main elements
to initialize and those containing the main results. As for the other lists the entities are grouped
in tables listing sequentially the elements of a single object. Links allow to jump to related objects
and/or elements.

144

9.7 Module Set Objects’ number asda 145

Figure 9.7: LSD model reports are HTML files automatically created describing the elements con-
tained in the model and presenting them in a variety of formats, from textual only to the actual
code and values used.

The second list provides for each variable and function the actual code used for to compute the
element, including also the list of the elements whose values are used in the code. For any element,
this list provides the list of equations making use of their values.

The third list includes all the initial values for the elements whose initialization may affect the
model.

The structure of the model report is such that users with different programming experience
can be provided with the best suited form of documentation. Moreover, the hypertextual format
allows users to skip through technical variables, such as averages etc., and focusing only on the
interesting parts of the model. Lastly, model reports are easy to transfer and use (basically, they
are text files, opened with any web browser), and easy to generate.

If the model report does not exist, the user can open another HTML file, possibly referring
to the report of another configuration of the same model. In generaly, however, it is necessary to
create a model report from the scratch. This can be done using menu Model, which allows to create
the model documentation automatically (endowing the model elements with all the information
automatically accessible) and the create the model report.

9.7 Module Set Objects’ number

This module determines the number of copies for the objects in the model.

The module report the number of copies in different lines. The labels of the objects are indented
on the right following their parent objects, that it, the objects they descend from. Given the number
of objects up in the hierarchy, there will also be consequently groups of descending objects. Hence,
each line refers to the ordinal number of the copy each group of object descends from.

Clicking on a group of objects, contained in specific copies of higher order objects, it is possible
to set the number of objects for that “branch” of the model tree independently from the other
groups of the same object in other parts of the model.

Besides the setting for individual groups of objects, the module offers also the possibility to
modify at once every group of that object in different “branches” of the model structure. Suppose

145

asda 146 LSD model program interfaces

Figure 9.8: The main window to set the number of objects presents each type of object with their number
of copies in the present model configuration. Clicking on this number it is possible to modify the number
of copies. Note that the window may be set to hide the number of lower hierarchical levels, in order to
identify more quickly the groups of higher level objects.

your model includes 3 copies for Market, each containing 1 copy of Supply. In the 3 resulting
groups of objects there can be a different number of copies of Firm. Suppose that now you want
to increase the number of Firm ’s to 200, but not only in a single copy of Market, but in all
the copies of Market of the model. As indicated in figure 9.9 it is possible to mark the option
to extend the chosen number of descendants to the whole model, or to the specific branch of the
model structure.

Figure 9.9: When setting the number of a group of object contained in a complex model structure, it is
possible to apply the new number of objects to all groups of the concerned objects at different levels in the
model.

The interface determining the scope of the changes allows to choose not only among the objects
one layer above, as in the example case, but to any possible higher layer. For example, suppose
that Market is defined as contained in objects of type Country. One may decide whether the
change should be applied to a single Market ; to all Market ’s in a single Country ; or to all
Market ’s in all Country ’s.

The system always appends new copies after the set of previously existing copies. The new
copies of the objects will replicate the content (e.g. parameters’ values, number of descendants,
etc.) of an example object. By default the system uses the very first copy of the object as example,
but users can choose a different one. This is done inserting the ordinal number of the desired
example copy in the field Copy from instance: . For example, if the first Market contains 10 Firm ’s

146

9.8 Module Initial values asda 147

and the user wishes to use the first object in the second Market, then the field should indicate 11.
For complex models the ordinal number of a specific copy may be difficult to calculate. Clicking
on Compute helps to find out the ordinal number of a copy by specifying the ordinal numbers by
different layers of the model.

In case the new number of copies of an object is smaller than the previous value, the system
by default would remove the last copies in the set of objects, but the user can indicate specifically
which copies must be removed. For example, suppose you have a model containing three copies of
an object. Setting one to the copies of this object it is necessary to remove two previously existing
copies. If the system decides automatically the copies to remove, it applies the rule that the last
copies in the sequence of previously existing objects should be removed. Therefore, the copies
removed will be the second and the third, leaving only the first copy. Alternatively, the user can
decide to choose the copies to remove. A sequence of windows will ask the ordinal numbers of the
copies to remove. For example, the user can indicate the first and third copy to remove, and the
new configuration will retain only the second copy. The option to specify each individual copy to
delete cannot be used when the new number of objects is applied to several groups, for example,
to all groups of Firm ’s in the previous example. In this cases, the system always remove the last
copies in each group.

9.8 Module Initial values

This module allows insert the initial values for all the copies of a specific object. The initial values
for a simulations are all the parameters, lagged variables and lagged functions present in the model,
that is the values necessary to compute the equations at the initial time step(s).

Parameters obviously need to be assigned an initial value1. Lagged variables are variables whose
values are used in some equations of the model with a lag, that is, it is the values from previous
time steps. In the earliest time step of the simulation, t = 1, there are no past values to be used,
and therefore the user must explicit provides this value, to be associated to the elements’ values
at time t = 0, t = −1, etc.

Lagged functions are functions whose values are required for previous computation of the func-
tion. In this case, the very first time function’s values are used there are no previous values to be
supplied to the “calling” equation, and, again, the past values must be initialized.

Figure 9.10: Module to set initial values for the elements requiring initializations within one type of
object. Elements are presented in rows and each column refers to a copy of the object in the model.

1Note that modelers may have equations to overwrite the value for parameters, though this may produce uncertain
results given that the system is not able to control the timing of parameters’ value changes.

147

asda 148 LSD model program interfaces

The module to insert initial values concerns all elements to be initialized contained in one single
type of object. The module’s interface provides one row for each element to initialize (and each lag
for past variables’ and functions’). The columns refer to the different copies of the object. They
are identified with a “tag”, a combination of digits referring to the ordinal copy of the objects
containing the elements and all objects in higher layers. For example, a model containing objects
Market in turn containing objects Firm, the columns for the initial values of elements in Firm ’s
will contain two digits: the first for the ordinal copy of Market and the second for the ordinal copy
of Firm in that copy of market. A tag may for example be 12 − 25, indicating the initial value
for the element indicated in the row and the copy contained in the 25th copy of Firm among the
set of this object contained in the 12th Market. A similar model composed by objects Country
containing Markets, then the initial values for Firm will be composed by three digits, as in
2 − 12 − 25: 2nd Country, 12th Market, 25th Firm. The tag for the cell with the cursor is
reported in the bottom line of the initial values interface

The interface for the initial values allows to insert manually the initial values for an element.
Typing one value and pressing the key Enter moves to the next cell. This interface can contain
a maximum of 100 columns, assuming that larger number of initial values will never be assigned
manually, but using an initialization function.

9.8.1 Initialization functions

The initialization functions are mathematical expressions assigning the values to the sequence of
initial values for an element, that is, all the initial values for, say, a parameter in every copy of
the object containing it. For example, an initialization function may consists in assigning identical
initial values to all the copies of the element. Initialization functions obviously affect all copies of
the element to initialze, even beyond the 100 shown in the module’s interface.

Figure 9.11: The Set all buttons permit to apply an initialization function to all the copies of one
element.

The initialization function for an element to initialized are determined using the button Set

all appearing in the beginning of each row, just after the label of the element. This interface is
very flexible, providing an extended set of different initialization function, besides the possibility
to control which copy of the elements need to be assigned with that function. For example, one
may use a given initialization to the first half of the elements and another for the second half.

The Set all interface is composed by three sections: the nature of the initialization function; the
values of parameters for the initialization function; the choice of pseudo-random values; frequency
of application; the extension of its application.

The initialization functions available are the following, each of which uses the two cells contain-
ing numerical values in different ways. In the following we will refer to these numerical values as

148

9.8 Module Initial values asda 149

those indicated in the first and second cell.

Equal to. Assign the same value, as indicated in the first cell, to all the copies of the element.

Range. Assign equally spaced values starting from the value in the first cell and finishing to the
value of the second cell. For example, suppose that there are 100 copies of the element to initialize,
and the initialization function Range is used with values from 0 to 100. Then, the first and last
copy of the element will be 0 and 100, respectively. The intermediate cells will have equally spaced
values: 0, 1.010101, 2.020202, 3.030303, etc.

Increasing. Assign increasing values to the copies of the element to initialize starting from the
value indicated in the first cell and increasing of the value in the second cell for each subsequent
copy. For example, using Increasing and setting the values of the data cells to 10 and 1 respectively,
the initial values will be: 10, 11, 12, etc.

Increasing (group). This initialization function is identical to the Increasing one, but it is re-set to
the starting value for each separated group of objects. For example, consider a model composed by
objects Firm contained in Market. Suppose there are many copies of Market, each containing
many copies of Firm. Initializing an element contained in Firm, using this initialization function
will assign increasing values to the set of elements contained in the first Market. Then, the initial
value for the copy of the element in the first Firm contained in the second Market is reset to the
starting value, equal to the value used for the first Firm in the first Market.

Random (uniform). Assign a real number as a random value for each element to initialize, using
a uniform random function whose lower and upper limits are determined by the values in the first
and second cells respectively.

Random integer (uniform). Generate an integer number as a random value for each element to
initialize, using a uniform random function whose lower and upper limits (included) are determined
by the values in the first and second cells respectively.

Random (normal). Generate a real number as a random value for each element to initialize,
using a normal random function whose mean and deviation are those indicated in the first and
second cell respectively.

File. Load the initialization values from a file. Files for initial values must be text files containing
one single column. The first element of the column is ignored, assuming to be a label.

Sensitivity. The user is requested to indicate in the first cell the number of values to use for the
element. On confirmation a new window will ask for the list of the values, separated by newline or
spaces (may even be pasted from the clipboard). If the list contains fewer value than those specified
in the first cell the remaining ones will be considered to be 0. This initialization does not modify
the initial values of the model, but allows to generate automatically configurations for sensitivity
analysis. When two or more elements are initialized, the Data / Sensitivity (see paragraphs 9.4.3,
p. 140) creates configurations including all possible combinations for the values of the elements
initialized as to be included in the sensitivity analysis.

The random initialization functions can be assigned using a specific seed generator. Using a
specific initialization ensures that the random values they are drawn from the same or a different
(pseudo-)random sequence as other initializations. Checking on the option to use the seed, the
random sequence will be regenerated using that seed.

The two sections in the bottom of the initialization window allow to specify which sub-set of
the copies of the element must be initialized according to the specified function. The first of these
section concerns the Frequency of the initialization, while the second concerns the Extension.

By default, the system applies the function to every copy of the element, that is, it has a
frequency of 1. Setting a higher frequency N (say, for example, 3), the initialization function will
regularly skip N − 1 copies and apply the initialization rule to the N th copy, in the example the
third. If the option Fill in is not checked, the copies in between those initialized are not set, leaving
the previously existing values. If, instead, this option is marked, the intermediate copies will be
set with the values previously generated by the initialization function. For example, suppose to
have selected the function Increasing, starting from 10 and with step 1. If the frequency is 3 and
the option Fill in is on, then the sequence of initial values for the copies of the elements will be: 10,
10, 10, 11, 11, 11, 12, 12, 12, etc.

149

asda 150 LSD model program interfaces

Concerning the extension, the user can choose to apply the function to all the copies of the
element in the model, or only to a range of contiguous elements (that is, of elements contained
in contiguous objects). The two cells in this section refer to the first and last object containing
the element of the model, which must be indicated with the sequential number of the objects.
To identify the sequential number it is possible to right-click the cells opening the interface to
individuate the sequential number of an object by giving the ordinal number of the higher level
objects (see figure 9.9 at page 146 and the related text).

The final option Update description does not affect the values inserted in the model but only
the documentation. If checked on, the system will automatically update the description of the
initialization concerning the element, specifying the function used and its values. If the function
used concern all the elements, then the new description will replace the previous one. Otherwise,
it will be appended, possibly requiring the editing of the modeller in case of potential confusing
text.

9.9 Module Analysis of Results

Figure 9.12: Main Analysis of Result window. Series available are listed in the left-hand box, series to be
processed in the central box, and graph produced in the right-and box. The user needs to move some of
the series in the central box, select the options and the operation required. The analysis of results module
is highly efficient in managing large data sets.

The analysis of results module is designed to present the data produced in (one or more)
simulation run(s) in formats suitable for the purposes of the researcher. Here is summary of the
functions of the module:

• Time series plots. Variables are plotted across time steps.

• Cross-section plots. Values of different variables are plotted at the same time step.

• Scatter plots. Variables’ values are represented as function of other variables’ values, gener-
ating both bi- and tri-dimensional graphical representations.

• Phase diagrams. Values of a variable at time t + 1 are represented as function of the same
variable’s value at time t.

• Frequency histograms. Values across time for a variable, or across variables at a given time,
are counted and grouped in frequency classes.

• Lattices. Values stored in matrices are plotted as lattices.

150

9.9 Module Analysis of Results asda 151

• Temporal or cross-section statistics. Descriptive statistics as average and variances can be
produced across times or across variables.

• Options. It is possible to let the system automatically assess the scale of the graphs, or force
the extremes of the axis. Other options include the symbols for series (lines or points), grids,
colors, labels, etc.

• Exporting graphs. Plots can be exported as encapsulated postscript files.

• Exporting data. Series can be exported as text files in a variety of formats (e.g. choosing a
separator, or fixed-column lenght; with or without labels, etc.).

• Gnuplot. The MS Windows distribution includes gnuplot, a specialized graphical package,
to produce advanced graphs, for example on data exported from LSD simulations.

The typical use of the Analysis of Results module consists in selecting one or, more in general, a
set of series to process; set the options for the type of operation desired; generate the results (graph
or statistics); replace the series and continue the process. Eventually, some graphs or data may be
exported, or the user returns to the LSD browser to generate a new configuration and running new
simulations.

In the following we report the instructions to perform the operations allowed by the module.

9.9.1 Selecting series to process

The first operation in using the Analysis of Result module (AoR) consists in individuating the
meaning of the available series and moving the selected ones in the central listbox.

A simulation model may generate large data sets, composed by several thousands of series each
containing thousands of data. For this purpose, the module includes also a powerful selection
interfaces, allowing to identify a specific set of series by their labels, values, or positions in the
model structure. For this purpose, the system identifies each series by a unique combination of
labels and digits, which can be exploited by the user to select series to process with many different
criteria. The label of a series contains the following elements:

Label TAG (TimeStart - TimeEnd) # order

The first components in a series identification is, obviously, its label. Secondly, each series is
associated to a “tag”, a group of digits identifying the “branch” of the model structure in which its
object containing the element generating the series was contained. For example, a tag as X Y Z
indicates that the variable was contained in an object placed at the third layer in the model
hierarchy (Root is the only object at level 0, level 1 refers to objects contained in Root, level 2
their descendants, etc.). That particular series was contained in the Zth copy of object at level 3,
which descended from the Y th copy of the object at level 2, which, finally, was contained in the
Xth copy of the object at level 1. Note that if a level contains one single instance of an object, then
its digit may be skipped, since it is not necessary to identify different series in descending objects.

Finally, the identification includes the time steps at which the copy of the element (that is, the
copy of the object containing the element) started to exist in the model and the date at which it
was removed.

The last code is unique ordering value, used for technical purposes and of no interest to users.
The first step in using the Analysis of Result module consists in selecting a group of series from

the left box Series Available and placing them in the central box Series Selected. In order to access
the series one can scroll the Series Available box, and sort its content in three different modes.
Firstly, the unsorted mode (used by default, and activated by pressing button Un-sort), list the
series according to their position in the model: first the series generated by elements in high level
objects, and followed by their descendants, then series from elements from the subsequent objects.
This sorting mode is useful since arranges the series in a sequence resembling the model hierarchy.

Secondly, it is possible to sort the series in the ascending alphabetical order of their labels. This
model is useful to identify a series without knowing their location in the model structure. Press
button Sort to generate this sorting.

151

asda 152 LSD model program interfaces

Thirdly, it is possible to sort series in alphabetical order but putting firstly all the series con-
tained objects still present in the model (not removed) at the final time of the simulation, and then
the series according to the descending time step of their removal. This sorting mode (activated
by pressing Sort (end)) is useful when the model stores many variables from objects created and
destroyed during a simulation run.

After having sorted the sets of series available as suited, the selection of the series one wants to
process can take place by the usual selection standards: click and drag, use of the Ctrl key to add
a new item to the selection; use of the key Shift to add sets of items to the selection and removing
previous ones, etc. Double-clicking on a series moves this directly to the central box, while it is
necessary to click on the button > to move there the whole selection from the left box.

9.9.2 Advanced selection

The system to select and move the series is practical only insofar users need to select a few series.
However, LSD simulations can produce hundreds or thousands of series, and the user may need to
select all of them, or a well specified sub-set. In these cases, using the mouse to select the series
is impractical, or totally unfeasible. An alternative selection mechanism consists in pressing the
right-button of the mouse on one of the series that the user needs to select.

Figure 9.13: Clicking with the right button on a series a powerful selection mechanism allows to choose
among the series available with the same label.

This selection mechanism allows to choose the series according to three possible criteria of
filtering the series with the specified label.

Firstly, and most frequently used, the option Select all the series allows to select all the series
with the specified label in the model. As mentioned, the label concerns the series the mouse has
been right-clicked, so that, in effect, the user needs not to type any text at all. This is the default
option.

Secondly, it is possible to filter the series with the specified label according to the tags, that
is, to the obejcts containing the series. This option is used by marking the window section Select

for series’ tags. This section contains a number of entry cells equal to the hierarchical level of
the object containing the element specified (in the example, three cells since the series specified
concern an element located in the third level). As mentioned above, this number is equal to the
number of digits forming a series’ tag. The user can enter integer values in one or more of the
cells, or leave them empty. The values entered in these entries will be used as reference values for
the condition chosen in the last section of the window Set condition to meet. For example, using
the default condition Equal to: =, the system will select all the series having the elements of the
tag equal to the value(s) entered in the entry cells (empty cells are read as accepted condition).
Using, instead, condition Larger: > the system would select all the series with tag’s values higher
than those specified in the entry cells.

152

9.9 Module Analysis of Results asda 153

The third filtering mechanisms (Select for values of another series) is based on the conditional
filtering based on the values of some element of the model, whose series is among those available.
The user must enter: the label of the element by which the to filter the series; the time step of
the series to consider; and a reference value. The elements used for the conditional part must be
located in the same objects as the elements whose series are selected. The system will compute
for each copy of the objects the value for the conditional element (at the specified time step). It
will then evaluate whether this element’s value satisfies or not the condition indicated in the last
section, as compared to the reference value. Only the series whose associated element satisfy the
condition will be selected.

For example, consider to use this filtering system and specifying: label for the filtering element
Age, time step 100, comparison value 10, and condition Smaller: <. The system will select only
the series with the specified label being contained in the objects that contained the element Age
at time 100 with values smaller than 10.

9.9.3 Graphs general options

The procedures to create any type of graph follows the same steps: insert one or more series in
the Series selected box; set the options for the graph; set the options for the type of graph; press
button Plot. For all graphs the user can set the following options.

Use all cases - From case ... to case If the first option is used the system will use all the
data available for the elements plotted. If different series have different starting and final times
the time series graphs will ignore data for missing times. For cross-section graphs series missing
the relevant data will be ignored. Using the second option (relevant only for time series graphs),
the user must specify the time step to be used as origin of the graph and that for the last time
step. Notice that when using the automatic option to use all cases, the system inserts in the cells
the first and last case (i.e. time step) used.

Y self-scaling - Min. Y ... Max. Y. The first option lets the system compute automatically the
vertical minimum and maximum values. Note that the maximum value is not the actual maximum
value of the highest series, but extends a bit the range of the vertical axis to allow for the points
plotted to appear in the window. The second option allows the user to force specified values for
the minimum and maximum vertical axis.

Y2 axis. This option is used only for time series sequential plots, and requires the use of the
option Y self-scaling. When this option is checked on the system will use two independent vertical
axes. The user needs to specify the series from which the second vertical axis is used. All the series
before the indicated one will make use of the first vertical axis. This plot allows to plot different
series normalized on two independent scales.

Title. This entry is automatically filled with the identification label of the first series entered
in the Series selected box. The text in this series is used to name the graph generated, and is used
only to identify the different graphs. Note that each graph is assigned also a progressive index.

No color. Generates black-only or gray scale graphs, depending on the type of graph.
Grids. Plots a grid in the graph, for readability purposes.
Lines - Points. Use lines (connecting separated points) or points only. The entry cell along the

points’ option allows to set the points’ size.
Menu item Color. This menu allows to modify the color associated to the indexes. This color

will be used to differentiate the series according to their order.

9.9.4 Graph windows’ features

The graphs generated are normally2 stored in LSD independent windows. These windows have
many features useful to interpret the results contained in the graph.

The lower border of the window shows the coordinates of the plane corresponding to the mouse
pointer position. Moving the pointer over one series shows the name of the series on the lowest left
corner of the window. Cross-section graphs reports also the order position of the series concerned.

Double-clicking anywhere on the graphs brings the main AoR windows on the foreground.

2Some 3D graphs can be created in separate windows managed by GNUPLOT.

153

asda 154 LSD model program interfaces

Pressing the Shift key and clicking allows to add a text label on the graph, which can be then
moved around with the mouse.

In the following we report some examples of graph generated with the AoR window depending
on the options chosen.

9.9.5 Graph type Time Series - Sequence

This graph generates one line for each series, placing the time on the horizontal axis.

Figure 9.14: The default options produce a standard graph with time on the horizontal axis and each series
selected generates one line. Moving the mouse on the area of the graph reports the pointer’s coordinates,
and, crossing a line, its label.

154

9.9 Module Analysis of Results asda 155

9.9.6 Graph type Cross section - Sequence

This options generate a graph containing one or more line referring each to a specified time step and
reporting all the values for the different series for that time step. This graph requires additional
information: the time step(s) to use and the ordering of the variables. When pressing the button
Plot with these options a new window asks for the necessary information (figure ??).

Figure 9.15: Cases to be used as “variables” for cross-section plots are inserted in this window, by typing

the times to appear as lines. By default, or pressing the No Sort button, the order of the series on
the horizontal axis is the same order of the series in the series available box. Alternatively, it is
possible to sort the series in ascending or descending order pressing the relative buttons when a
time step is highlighted.

The user must type at least one time step (in the top-left entry cell), and pressing the button
Add for each of them (or just the Enter key). The inserted cases will appear in the box below the
entry cell. Cases can be removed by selecting them and pressing Delete. When all the cases have
been inserted the user can highlight one of them and press the one of the buttons to sort the series.
The order of the series as appearing on the horizontal graph will be then re-arranged to sort the
series depending on their values in respect of the chosen time step.

The window has also a hidden feature. Pressing the following combination of keys, and using
the the content of the entry cell, the system automatically add whole batches of series. The
combinations are the following:

• Controf+f (from): use the value as starting time.

• Controf+t (to): use the value as final time.

• Control+z: add to the list of time steps selected all the times from that indicated as starting
time to the final time.

• Control+x: indicate a step, so that if 100 is the starting time and 10 is the step, the times
inserted will be: 100, 110, 120, etc.

Pressing Continue will generate the graph, while button Abort terminates the window without
generating the graph. The graph will show on the horizontal axis the series and will link the points
corresponding to the same time step for each series.

9.9.7 Graph type Time Series - XY plot

These options produce a scatter plot where the values of some series are used as independent
variables and others as dependent, creating graphs where each point is a single time step. Choosing
the option Lines the system tries to interpolate the points forming smoth curves. It is anyway better
to use the option Points for most of cases.

The system behaves differently depending on the number of series in the Series Selected listbox.

155

asda 156 LSD model program interfaces

Figure 9.16: Example of a cross section sequential graph. 100 series selected have been evaluated at time
300, and ordered according to their descending values at the chosen time step. The mouse pointer crossing
the line indicates the series concerned and its ranking order.

Single series

When the system finds a single series it generates a phase diagram where each point is defined at
the coordinate Xt on the horizontal axis and Xt+k on the vertical axis. In this case the system
asks for number datum from the series and the number of lags k. The system also offers the
possibility to generate the graph as image in a standard LSD graph window or in a higher quality
gnuplot window (default option). As all gnuplot windows there are special functions embedded in
the window, such as the possibility of rotating the graph and direct exporting to file; these options
and their control depend on the operative system.

Optionally, the user can plot a line in the graph placed at 45’.

Two series

When two series are present in the Series Selected the system directly generates the scatter plot
where the values of the first series are reported on the horizontal axis and the values of the second
are measured on the vertical axis.

Three or more series

When plotting this graph with more than two series selected, the module generates a new window,
asking for additional information concerning the graph.

The user can choose a bi-dimensional scatter plot (2D) or a tri-dimensional (3D) one. In the
first case the first series in the set of series selected will be used as independent variable (measured
on the horizontal axis), while the second and following series will be plotted generating as many
independent lines, one point for each time step.

Choosing 3D graphs there are several options. The default option generates a 3-dimensional
space where the first and second series are used as coordinates on the plane. Any subsequent series
is considered as independent surface measured on the vertical axis. Figure 9.18 shows an example
of a 3D scatter plot with two independent series defined on the same plane.

The second option generates, in effect, bi-dimensional graphs placed, however, in a three di-
mensional graph where the time dimension is one of the two dimensions on the horizontal plane.

The third option plots each series independently as time series, using the ranked position of the
series as one dimension of the plane, and the time as the second dimension.

The last technical option allows to choose between a standard LSD graphical window or a high
quality gnuplot one. As all gnuplot windows there are special functions embedded in the window,
such as the possibility of rotating the graph and direct exporting to file; these options and their
control depend on the operative system.

156

9.9 Module Analysis of Results asda 157

Figure 9.17: To create a scatter plot from time series the system asks whether the graph should be 2D
(one independent variable) or 3D (two independent variables). For 3D graphs it is possible to use gridded
data (interpolating points) and generating color mapped surfaces. Finally, the user can decide to have the
graph as a standard LSD graph window (low quality), or having the graph plotted in an interactive gnuplot
window.

Figure 9.18: Example of a 3D scatter plot computed across time. The model generating the data is
Yt = Kα

t ∗ L1−α
t . 10000 random values for K and L are used to compute two different series of Y ’s using

different α’s. The plot is generated with lines and gridded data.

9.9.8 Graph type Cross section - XY plot

These options generate a graph at a single time step, indicated in the first cell of the option window,
using the data from all the series selected. The system divides the selected series in blocks, with
each block providing the sets of values to be used as variables for the axes of the graph.

In case of 2D graphs the system by default divides the available series in two halves, assuming
a single dependent variable. In this case the first half provides the horizontal coordinates of the
points and the second half provides the complementary vertical coordinates. Users can indicate
a larger number of dependent variables. Indicating the series must provide data for k dependent
variable the system divides the data in k + 1 blocks, where the first block provides the common
coordinates for the horizontal axis and the system plots k independent series on the vertical axis.
The users must ensure that the number of series is a whole multiple of k+1; the system reports the
number of points implied by the number of series selected and the indicated number of dependent
variables. Figure 9.20 shows an example of a 2D graph.

In case of 3D graphs the same system applies. The system divides, by default, the series selected

157

asda 158 LSD model program interfaces

Figure 9.19: Plotting a cross section scatter plot use only one time step value from each series selected.
The graph generates the horizontal axis (or axes, for 3D graphs) using the values from the first (or first
two) blocks of variables, while the subsequent blocks will provide the values for the dependent variables.

in three blocks, using the first two as coordinates for the plane and the third as height of the plotted
surface. Similarly to the 2D case, users can set a different number k of dependent variables. In
this case the system divides the series selected in k + 2 groups generating the horizontal plane
coordinates with the first two blocks and k independent surfaces on the vertical axis.

9.9.9 Graph type Histograms

Clicking on the button Histograms generates a graph containing a representation of the frequency
of the values indicated in the series selected. The histograms are built dividing the range of the
values used in as number of classes, as indicated by the user, with each class having the same width.
For example, if the values used to generate a histograms have a minimum of 10 and a maximum of
30 and the user asked for 10 classes, the first class boundaries will be [10-12], [12,14], ..., [28-30].
The system then counts how many values fall in each class and reports on the graphs columns with
height proportional to the frequency in each class.

The graphs for histograms show the information on each class when the mouse pointer is moved
onto a class, including the class’ boundaries and middle value, actual minimum and maximum value
in the class, etc. Moreover, the user can ask for the information to be printed in the log window.

Histograms may be computed from a single series using its values across time, or from many
series using one single value for each of them. The option Time series or Cross section determines
which type of histograms are computed. When Time series is selected, there must be one single
series selected, otherwise the system will issue an error message. A maximum of 100 classes can
be specified by the user.

9.9.10 Graph type Lattice

Lattices are graphs formed by grids of with each cell colored according to a value specified by a
non negative integer. Lattices require to insert as selected series as many series as the number of
cells. The system assumes that the series are contained by lines: first all the values for the first
line, then the values for the second line, etc.

The user must provide the data for the time step to be used from the series selected, and the
number of columns for the graph. This number must be an exact divisor of the number of series
selected, since the division of this two numbers provides the number of lines. The user must also

158

9.9 Module Analysis of Results asda 159

Figure 9.20: Example of a cross section 2D scatter plot using points, represented in a gnuplot window.
The series selected contained 200 series. The first 100 provided the values for the horizontal axis. The label
reported on this axis is the label for the first series of this block. The second half of the series provided the
value (at time step 300) for the dependent variable, again, the label is reported from the very first series
in this block.

Figure 9.21: Example of an histograms. The data are produced by a generating 1,000,000 random draws
from a standardized normally distributed function. The histograms computes the frequency for 50 classes
and interpolates a normal function computed with the same mean and variance of the data.

specify the number of pixels to be used for total width and height of the lattice window, which
obviously must be larger than the number of lines and columns. See figure 9.22 for an example.

9.9.11 Statistics

The system can compute descriptive statistics from the series selected. The statistics concern
average, minimum, maximum, variance and standard deviations of the values indicated. The
computation can be performed across time or across series, as indicated by the options Time series

or Cross section respectively. The results will be shown in the log window.

9.9.12 Exporting data

Clicking on the Save data button the system exports the values from the series selected in a text
file. The data can be exported as LSD result file or as plain text files. In the first case the data can
be uploaded by any LSD model program using the appropriate command in the Analysis of Result
module (Add Series).

Choosing to export data as text file it is possible to choose a variety of options, such as the
delimiter symbol and names of the variables.

159

asda 160 LSD model program interfaces

Figure 9.22: Example of a lattice. The series selected are taken from a 400 x 400 matrix, represented in
LSD as 400 objects Row containing each 400 objects Col. The series concern an element located in Col,
taking values 0 or 1.

9.9.13 Exporting graphs

Clicking on the button Postscript the user can save a graph window as postscript file, for inclusion
in a document.

9.9.14 Adding further series

The values that the user can process in the AoR module are those produced during the last
simulation run by elements marked as being saved for this purpose (see paragraph 9.1.2, pag. 134).
However, the module allows also to add more series in the set of the available series. Additional
series can be obtained pressing button Add series in between the two listboxes.

Figure 9.23: A single new series can be created as a statistics computed on the data contained in the
series selected. The new series can be computed by computing the statistics for each time step across all
the series, or for each series across all its time steps.

The new series can be obtained from several sources.

160

9.10 Module LSD Debugger and Data Browser asda 161

Current state of the model. It is possible to insert the data from an element of the model
not saved during a simulation run. In this case, the number of new series will equal to the copies
of the objects containing the element. Each of the new series will contain a single value, which will
be assigned the conventional time step of t = 0. This series can be used as independent variable
in cross-section scatter plots even in case the user specifies different time steps for the dependent
variables.

Previously saved result files. User can add new series stored in files previously generated
during past simulations. Users can select single files or whole batches of them, as those, for example,
generated during batteries of simulations. In this case, the system will add all the new series as
contained in the result files, assigning them the original names extended with the letter F (so that
Label will appear as LabelF). Moreover, these series will have a further digit attached to the tag,
indicating a progressive index for any file. The log window will report the code for each file so as
to associate series to specific simulation runs.

Moving averages from selected series. If one or more series are reported in the Series

Selected listbox it is possible to create as many new series computed as moving average of the
selected series smoothed over the indicated number of time steps.

New series from elaboration of selected series. The user can elaborate the values from
the selected series generating a single new series. The options available are listed as in figure 9.23.

The options available are the following. By default the system considers the creation of a new
series with the same number of time steps as the selected series, and considering the elaboration
across the selected series. Alternatively, the user can choose to elaborate the data across time steps
to generate a new series having as many virtual time steps as the number of series.

The second option allows to remove from the elaboration outliers, i.e. data too small or too
large, where the user imposes the treshold.

The type of elaboration includes: average; sum; maximum; minimum; variance; standard devi-
ation (times a constant); counting.

Finally, the user can specify the new variable’s label and a tag number.

9.10 Module LSD Debugger and Data Browser

The LSD browser shows the content of the model by means of their structure, but does not allow to
inspect the copy of each element. The LSD debugger and the data browser use similar windows to
provide access to each individual element of the model, object by object. The data browser is used
when a simulation is not running, activated by menu Data/Data Browse of the LSD browser. The
LSD debugger is instead used during a simulation run, when it is interrupted. The LSD debugger
includes, besides the data browser, also the commands to control the simulation run. In the
following we will refer for rbrevity only to the LSD debugger, though all the commands work also
for the data browser.

The LSD debugger shows the state of one copy of an object. Starting from the button, the
debugger window includes:

• The list of elements contained in the object, including their current value.

• The position of the copy shown in the debugger within the object structure of the model.

• A set of buttons to move the browser through the object structure.

• A set of buttons to control the simulation run (not present in the data browser).

• The label of the equation just executed, which caused the debugger to be activated (not
present in the data browser).

The LSD debugger is activated during a simulation run under a variety of conditions:

• The equation for an element marked to be debugged is just computed and the simulation is
running in debug mode.

• The value for an element just computed meets a condition previuously specified by the user.

161

asda 162 LSD model program interfaces

Figure 9.24: Debugger set on the equation for Purchase at the 42nd time step. The debugger window, as
the data browses, show the state of a model for each individual copy of an object. The user can observe the
state of the elements within the objects, moving through the object structure, modify the values, activate
equations, analyse the results, and continue the simulation run.

• The equation’s code executed encountered the command INTERACT(...).

• The execution of an equation caused an unrecoverable error, aborting the simulation.

In all the cases the debugger contains the state of the model during a simulation run at a
specific point of the simulation. This point is indicated by the computation for a variable (or a
function) and the copy of the object containing the element. Users can perform several actions
with the debugger window.

9.10.1 Inspecting and changing elements’ states

The list of the elements in the debugger shows all the elements contained, their values and their
nature. For variables, the window shows the time step at which the variable was lastly updated,
that is, executed its equation. Note that in the top right corner of the window it is reported the
current time step, so that the user can assess whether a variable has been already updated or still
waits for its equation to be executed within the current time.

Every element can be modified, that is, its values changed. Double-clicking on its label, a new
window appears, showing its value(s) used in the model, and offering a variety of options.

This option window shows the value of the element, which can be modified by the user, including,
if existing, the lagged values. Along the cells to enter the new value, the button Set all activates
the initialization function for the same type of elements of the model, so that the user can change,
at a single stroke, a whole set of elements.

Below the cell(s) for the value(s) of the elements, it is possible to decide the debug option for
the element (obviously, not present for parameters). Marking this option will cause the simulation
to be interrupted as soon as this specific element is computed. The option to debug or not the
element can be applied to every copy of the same element in the model marking also the second
option.

The rest of the buttons perform the following operations:

• Done. Concludes the option setting for the element and return to the LSD debugger;

• Equation. Shows in a new text window the equations’ code for the element (not present for
parameters).

162

9.10 Module LSD Debugger and Data Browser asda 163

Figure 9.25: Double-clicking on one element in the list shows the value contained in the element and
various options to edit its state and properties, both for that single copy or for all the copies of the same
element in the model.

• Execute. Computes the code for the equation of the element, if the computation is compatible
with the state of the element. That is, always for functions, and only if the variable’s last
update time is more recent than the current time.

• Set conditional break. It is possible to define a comparison value and one of three conditions to
determine whether the debugger should be activated again. The condition will be computed
every time the element is updated, and, if met, will activate the debugger in any case.

9.10.2 Inspecting and changing objects

The central square in the window shows the position of the object in the model structure, and the
ordinal number of its copy within the group of the same type of objects descending from the same
copy. Similarly, the same information is reported for all the objects at higher hierarchical level, up
to the Root of the model.

It is possible to click on the Object instance: label of the window to access the automatic setting
of the number of objects. This window (shown in figure 9.9 pag. 146) allows to increase or decrease
the number of objects within the model.

9.10.3 Moving the browser through the objec structure

The lower row of buttons allows to move the debugger window through the objects.

• Up, or the up arrow. Move to show the object containing the current copy.

• Next or the right arrow. Move to show the following copy (on the right) of the current object.

• Next type, or the key t. Move to show the first copy of a different type pf object following
the current object.

• Last, or the key l. Show the last copy in the group of the object of the same type as the
current object.

• Down, or down key. Show the first object contained in the current object.

• Prev., or left arrow. Show the previous object contained in the same parent as the current
object.

• Caller, or key c. If pressed as soon as the debugger was activated, show the object containing
the element whose equation caused the present equation to be computed. Otherwise, and
in case the equation was computed because of the LSD simulation manager normal activity,
does nothing.

163

asda 164 LSD model program interfaces

• Hook, or key h. Move to the object linked through the hook (a link set by the modeller) to
the current object.

• Search for, or key f. Show the object containing a specific element with a specific value.

9.10.4 Simulation run’ controls

The first row of buttons is available only for the debugger window, not for the data browser. These
commands provide information about the state of the simulation and allow to set the options to
continue the simulation run.

• Print stack level X. When the simulation re-start, the log window will show the time spent
and various information about the execution of equations computed below the stack level
specified. This is the same option available from menu Run/Sim. settings in the LSD browser.

• Print stack. Prints in the log window the current content of the stack. That is, which
equations initiated their computation and were interrupted because other equations needed
to be computed firstly.

• v[...]. Shows the list of the temporary C++ variable used to store intermediate results during
the execution of the equation that caused the debugger to be activated.

• Step, or key s. Continue the simulation in debug model, in order to interrupt the simulation
as soon as another element marked as to be debugged has its equation computed.

• Until, or key i. Set the next time step at which the simulation must enter the debug mode.

• Run, or key r. Exit the debug mode and continue the simulation.

• Analysis, or key A. Exit the debugger and activate the analysis of results module. The module
will be given all the data produced by the simulation until the previous time step. However,
if new data, besides the series explicitly saved, are requested in the module, they will concern
those contained in the current state of model, without controls on which time step they refer
to.

9.10.5 Debugger header

The top row of the debugger shows the element just computed (which caused the debugger to
be activated), its most recent value, which can be modified, and the current time step of the
simulation.

If the debugger is activated by the modeller’s command INTERACT(...) inserted within an
equation, the header will contain the message and the value specified by the modeller. The return
value of the command will be those inserted by the user.

9.11 Log window features

This window shows the messages generated by the system, as warnings, errors, or statistics. More-
over, this window prints the step completed for a simulation when the users do not use the run
time plotting.

The window is formed by a text editor, and a row of buttons. The editor can be used to select
and copy the text contained. The buttons serve exclusively at simulation time, while a simulation
is executed.

9.11.1 Button Stop

Quit the simulation, keeping the data up to the last time step available.

164

9.12 Model structure window features asda 165

Figure 9.26: Log window, used to communicate messages from the system to the user and to issue
commands while a simulation is running.

9.11.2 Button Fast

Iconify the run time plot window and interrupts the printing of the steps completed. While running
in this state the simulation is sensible faster.

9.11.3 Button Observe

Return the LSD model program to execute the simulation as before pressing button Fast. The
simulation is slower, but the run time plot is visible, or the time steps plotted in the log window.

9.11.4 Button Debug

Activates the debugging mode. In this mode the simulation is interrupted at the first occasion
an element marked as being debugged completes the equation computing its new value. See
instructions on the module LSD debugger.

9.11.5 Button Help

Show the manual page for the log window.

9.11.6 Button Copy

Copy in the clipboard the text selected in the Log window, useful when, e.g., statistics are written
from the Analysis of Results module.

9.12 Model structure window features

The model structure window contains a graphical representation of the tree of objects for the model.
The object Root on the top is not shown. Any other object contains the number of instances for
that object in the configuration, possibly divided in groups of digits in case the parent of the object
is present with many copies. The window shows only the number of the first 5 groups.

Moving the mouse over the symbol for one type of objects makes appear a window detailing
the elements contained in the objects. The window disappear when the mouse leaves the symbol
for the object.

Double-clicking on the symbol of an object moves the LSD browser to show the object indicated.
Right-clicking on the symbol of an object, or keeping the key Ctrl pressed and left-clicking, the

LSD browser activates the window to initialize the content of that type of object.

165

asda 166 LSD model program interfaces

Figure 9.27: Graphical representation of the model structure. This window provides an overview of the
object structure of the model and gives access to the most frequent commands, like moving the browser to
show an object, list its content, or opening the module to initialize its elements.

166

Chapter 10

LSD modelling language

10.1 Introduction

Simulation models can be thought of as computer programs sharing some common features, such as
defining a simulation clock, or saving and plotting simulation results. LSD provides the opportunity
to exploit the computational power of C++, a basic programming language, to represent the
computational content of a simulation model, but generating automatically all the features common
among all simulation models. Therefore, any type of model can be implemented in LSD, and the
implementation is extremely fast and simplified, since it requires no further programming knowledge
than that required to express the model’s own computational content.

A LSD model is composed by four types of elements: objects, variables, parameters and func-
tions. Objects must be thought as the simulated counterparts of real-world entities, and in the
model act as containers of the any types of element.

A simulation run consists in executing a sequence of time steps, during which the system “scans”
all the objects present in the model at the time and “updates” the variables there contained. The
updating consists in executing the “equation” for the variable, that is, a chunk of programming
language code that returns a numerical value.

The modeller writes the model by defining the model structure and the equations. The structure
of a model consists of the lists of objects, variables, parameters and functions, that are inserted in
the model by means of simple and intuitive graphical interfaces, requiring basically only to type
the element’s label. The equations are written as text in a file that is then compiled along with
the rest of the LSD source code. The code of an equation consists of a header (declaring which
variable or function it refers to), a body, in which any computational command can be inserted,
and a numerical results, to be associated to the variable or function as equation’s result.

The results of the simulation depend on the interaction between the equations of the model
and the model structure. As any program, simulation models also have generally many different
possible implementations generating the same results. Therefore, one may choose among at least
a few different approaches to implement the model. In the following we present the description of
the rules governing the definition of a model structure, and of the language available to write the
equations of the model. It is worth to notice that building a model entails working in parallel on
the model structure and on the equations, writing, testing, and editing them by small incremental
steps. Therefore, there is no rigid priority on whether to start defining the configuration or from
the equations.

Ideally, a modeller should start by having on paper a set of equations expressed as discrete
difference equations, and trying to implement them while generating the structure within which
the elements required by the equations are inserted. Any new equation should be tested by testing
its behaviour, and then adding further elements. Modifications of either the structure or the
equations can be easily introduced. Therefore, for example, a model containing several variables,
each computed as elaboration of others, can still be tested by initially defining one single equation
for a variable, and defining as parameters the other elements, so that the model can run and
undergo testing. Once the first equation is reliably tested, one of the model parameters can be
turned into a variable, its equation added, and a new round of testing can be performed. Following

167

asda 168 LSD modelling language

this cautious approach, one is guaranteed to quickly develop a model without wasting time in
hunting tens of errors, or missing crucial implicit aspects of the model.

10.1.1 Model structure

The structure of a model is composed by a hierarchy of objects, where each object is contained
within another one, and, in turns, contains variables, parameters and functions, besides, possibly,
other objects. The object Root is necessarily the top-most object of any model, is the only object
that cannot be multiplied in many copies, and its label cannot be changed. Therefore, the first
steps in building a model structure consists in defining one or more objects as contained into Root.

Given this constraint, any user-defined object has necessarily one of three possible relations
with the other objects of the model. Considering, for example, a model composed by only two
objects labelled A and B, we may have that A contains B ; B contains A; or they have not relation.
The issue is to determine therefore whether two objects should be placed in the structure in one
of the above relations.

However uneasy one may feel at the beginning when designing the model structure, a little time
working on it will quickly remove obvious mistakes, and will speedily produce a sensible structure.
In the following we provide a few rules of thumbs to apply when in doubt about the relation
between any two objects.

The relation of containment among objects represents, literally, that the contained object is part
of the “parent”, or container, object. Let’s use the convention that Root is the top-most object,
and that contained objects are at a “lower” a lower level than containers. High level objects should
be thought as aggregate entities, containing variables that have a relevance over the whole set of
elements contained in the lower level objects. For example, an aggregate object may contain as
a variable the average of variables stored into lower level objects. Or the high level object may
contain a parameter used by all the variables in the lower level objects.

The major role of the structure is evident when a model is configured with many copies of object
types. In fact, the structure of the model, how the objects are organized in the hierarchy, determines
how the equations in the model access the elements stored in other objects. Given the hierarchical
structure, all the copies in lower level objects are contained within a single copy of a high level
object type. Suppose, for example, that a model is defined as having two objects, Market ’s and
Firm. Defining Firm as contained in Market implies to assume that any given firm will be
assumed to stay within the same copy of Market during a simulation run. Alternatively, placing
Market as contained in Firm implies to assume that every firm will act upon several, independent
markets. The independence is due to the fact that each firm will have its own set of markets, which
are not related to other firms. A third option is to consider the position of Market and Firm
as “parallel” in the hierarchy, but contained within a third object, as Root or another, high level
object. In this third case, firms and markets will not have a structurally determine relations, and
the model will be able to relate any firm to any market, and vicevera, though the modeller will
have to write equations determining the relations any time they may occur.

The relation among objects are relevant because of the way LSD computes the equations, in
particular, how the system provides, at run time, the data from the model necessary for an equation
to be computed. LSD offers a simple default system, and many possible ways to work around the
default choices. The test of a structure, whether it is a “correct” one or not, consists in checking
whether the equations computing the elements in the objects can be easily written using the default
LSD system, or require an extensive use of manually instructing the code. In this latter case, one
may be certain that a different structure is more likely to allow for an easier implementation of the
code.

10.1.2 LSD equations

Modellers express their equations as chunks of C++ and LSD code producing a numerical value1

which is attached, during a simulation run, to one copy of the variable which the equation refers
to. Modellers can control the steps executed during a simulation run exclusively by writing code
for one element of the model.

1LSD limits to consider only real valued numbers (double precision floating point).

168

10.2 Computable elements: variables and functions asda 169

LSD is inspired to the representation of a model as normally used in discrete difference equation
models. Therefore, equations must be conceived as pieces of code to be executed at the generic
time step t for the generic copy of an element (say, a variable) that can be present in the model
with several copies. Therefore, the theoretical representation of a model’s code can be directly
transcribed in LSD from a set of equations as:

X = f(X−l, Y, Z, ...)
Notice that LSD equations do not need redundant information, which, being redundant, risks

generating inconsistencies. In particular, the LSD equations do not need to use a time index t,
since it is implicitly assumed that the value produced will refer to the present time step of the
simulation. If the arguments of the equation need to be evaluated at a past time, then the modeller
will indicate only the number of lags.

Also, the equations’ code does not distinguish between types of elements for the arguments.
They may be parameters, variables or functions, but, in the equations’ code they are always referred
to by their label. These feature is very handy since one can turn an element from, say, a parameter
to a variable, or viceversa, without affecting the code for the equations using the element.

More relevantly, the modeller needs not to provide (necessarily) an identification, by means of
an index or other data structures. For example, suppose that the model includes several copies
of entities representing markets, and that each market is formed by a group of firms. Standard
representation of the equations for variables contained in markets and firms would use a combina-
tion of indexes to refer to the elements contained in the different entities. For example, elements
referring to the markets will be indexed with i, and elements in firms with a double index (i, j),
for the market and firm.

LSD equations ignore these indexes, referring only to the labels of the elements without making
explicit reference to the position of these elements in the model. For example, consider that the
quantity of a firm is a function of the price. The LSD equation will be the equivalent of the
following expression: Q = f(p), independently from the price being an element part of firms or of
markets. LSD system will use in the equation the most “sensible” price: if there is such an element
associated to the firm, then it will be used. Otherwise, the system will search for the copy of the
market containing the firm, and, if found, will use that copy.

These properties of LSD rely on the system to retrieve the appropriate elements for the compu-
tations of an equation. Such run-time solution of potential indeterminacies is extremely useful to
easily edit a model and re-using parts of it. In fact, we may change the behaviour of the model
by maintaining intact the equations’ computational content, but modifying only the positions of
the elements in the model structure. Also, we may extend the model without requiring the modi-
fication of the existing code. Consider, for example, the case of a model that, after having defined
markets and firms, decide to introduce countries as new entities, each containing many markets.
The indexing system referring to the elements of markets and firms would need to be changed, in
order to include also the information on the country each market and firm is contained into. LSD

would operate this modification automatically without requiring any modification to the existing
code.

The automatic system used to provide each equation with the “correct” elements necessary for
the computations will be described in the following of this section. It needs to be noted, however,
that this system can be overruled by the modellers to express different choices, for example, when
an equation needs to change, according to some rule, some specific elements to use. For example,
suppose that a firm has a rule to shop around different markets to spot the currently highest price,
and that it will then compute accordingly the quantity produced. Such equation cannot rely on the
automatic LSD system to find the “correct” copy of the price, since the rule needs to be explicitly
defined. The language available for express LSD equations allows to easily cope with such cases.

10.2 Computable elements: variables and functions

LSD admits two types of elements that can execute computational operations, and consequently
(potentially) change values. It is only the execution of the equations associated to these two classes
of elements that the modeller can control. The two classes are variables and functions. Variables
are elements of the model that need to be computed once and only once at each time step. That is,

169

asda 170 LSD modelling language

at each time step a variable will assume a new value which is the result produced by the equation
associated to the label of the variable. The equation associated to a variable will then be computed
once and only once at each time step.

Functions in LSD models are elements similar to variables, in that their value is computed as
the result of an equation, but the timing of updating for functions is different. Functions are not
updated automatically at each time step, but only if other elements of the model (that is, other
equations in the model) require their values. If, in the same time step, several equations require
the value of a function, then the equation for that function is re-computed at every requests.
Conversely, if the value of a function is never requested during a time step, then its equation is not
computed at all.

As example of a variable, consider a model where variable Price is determined at market level,
and it is meant to be the same variable (and the same value) at each time step for all the firms
in the model. Each of many firms uses Price (say to determine the profits), so that each time
step the value of Price is requested many times by all the equations for Profits in the model. Of
course, the modeller wants that, at the same time step, an identical value of Price is used by all
firms.

As example of a function, consider a model where firms can innovate the technology randomly,
with a probability determined by several factors, like the total investment in R&D of the industry
and its own investment. The modeller may desire to create one single variable computing the prob-
ability to innovate for any firm (which may depend on both the firms own internal characteristics,
plus other elements, like the overall level of scientific development) and returning the failure or
success of the innovation. Of course, the code must be re-computed every time a firm tries the
innovation, even within the same time step, since it makes no sense using an identical result for all
the firms.

Note that for both variable and functions it is possible (and, generally, it is the case) that the
model includes several copies of the same type of element. For example, we may have a variable
Price contained in object Firm, and the model includes several copies of this type of object. Each
copy of the variable Price will be computed once and only once at every time step, and therefore,
the code for its equation will be actually computed, in a time step, as many times as many copies
of Firm are defined in the model. The differences in the results of each execution of the equation
for Price will be due to the environment in which the equations code is executed, that is, the copy
of the object in which Price is contained.

10.3 LSD Simulation Manager

At the start of a simulation run the model is composed by the configuration and the list of equations,
compiled as a list of pieces of code associated to every variable and functions of the model. The LSD

module dealing with generating an actual simulation run is called LSD Simulation Manager, LSM.
The task of the LSM is to ensure that the sparse information entered by the modeller is arranged
in such a way to produce the intended results, that is, generating a stream of values for each of
the elements contained in the model at each time step. The values of the elements in the model
are generated executing the equations associated to them, and using their results as the up-to-date
values. For a simulation to work properly, it is necessary to guarantee two properties: firstly, all
the equations for the variables of the model must be executed once, and only once; secondly, if two
variables have equations that must be executed in a specific order, this order must be respected.
The LSM ensures that both properties are respected. In this paragraph we provide in some detail
how the LSM guarantees the proper execution of a simulation step, updating all the variables with
the correct order of execution of their equations. However, this knowledge is not necessary for LSD

modellers, therefore uninterested readers may skip the rest of this paragraph.

It is possible to consider the task of the LSM as divided in two sub-tasks. The first sub-task
consists in scanning all the objects of the model, with an efficient and exhaustive strategy. By
efficiency we mean that the strategy needs to pass through each object once and only once, and
exhaustive imposes that every object is scanned. There are many possible such strategies. The one
used by LSM consists in starting from the top-most object (Root) then moving to its descendants
and, for each of them, replicating the same routine, scanning the descendants. When an object

170

10.4 Environment for LSD equations asda 171

without descendant is encountered, then the routine returns “up” to the object containing the
object just scanned, and moves to scan its next descendant.

The second sub-tasks consists in updating the variables of an object. When an object is reached
by the scanning routine, the LSM operates the updating of the variables stored there. The updating
routine for a variable terminates when the equation for the variable is completed, and the result is
stored as the value for the variable at the current time step. However, in between the beginning of
the updating of a variable, and the assignment of the result, it is possible that other operations are
performed. The LSM is also used, during the execution of the equation, to provide the computation
with the necessary values, which may require the execution of other equations, even in different
objects. For example, suppose that the scanning routine has reached an object and a variable
X undergoes its updating. Suppose also that the equation for X requires the value of another
variable Y at the current time step (i.e. no lags). The LSM searches the model for the copy of
Y required for the computation, and controls whether the variable has been already updated or
not. In this second case, the LSM interrupts the computation of X, updates Y, and uses its value
to complete the equation for X. When the LSM will scan the object containing Y, the updating
routine will recognise that the variable has been already updated at the current time step, and will
not execute its equation again. Therefore, the updating actually triggers the computation of an
equation only when it encounters a variable that has not been already updated because of other
reasons.

For example, consider a model where a high level object, for example Market, contains a
variable TotQ, computed as the sum of all variables Q present in objects Firm, contained in
Market. The LSM will encounter firstly TotQ, because it is stored in a higher object than those
containing the Q ’s. Therefore, its updating will begin before the “natural” updating of any Q.
However, the equation for TotQ cannot be completed until all the Q execute their equations,
providing their up-to-date values. Therefore, the execution of the equation for Q will be triggered
and completed during the updating of TotQ. When the scanning routine will pass in the objects
Firm, it will recognise that the variables Q are already updated, and will skip the (re-)execution
of their equation.

Notice that the strategy used by the LSM to scan the object is irrelevant, as far as every object
in the model is scanned and their variables updated. In fact, the variables of the model may be
either independent from one another, or they may need to follow a local precedence order, that is, a
few ones need to be updated before others. LSM ensures anyway that the compulsory precedences
orders are respected, while independent variables may be computed in any order, without affecting
the model results. The strategy for scanning objects described above ensures that when an object is
“under computation”, that is, its variables updated, all the higher order objects have been already
scanned and their variables updated.

10.4 Environment for LSD equations

When writing the equation for a variable (or a function), the modeller must assume that the code
will be executed by a generic copy of the variable at a generic time step. One of the major features
of LSD is that a modeller can express the computational content of the equation in a generic way,
and then leaving to LSD the job of automatically “customize” the actual computation to each
specific copy of the variable.

The commands contained in an equation are expressed by the modeller assuming a default
system: if not other specified, the most “obvious” result is produced. Such system allows to
express the code for the equations in a very compact and intuitive format, though leaving the
possibility to express any type of computation.

10.4.1 Managing time lags

Any operation concerning the values of the model, as, most typically, the requests to use the value
of an element, is assumed by default to concern the value at the most recent time step available.
Using the conventional mathematical notation, if the equation for variable X requires the value of
variable Y , then, by default, the computation executed will be Xt = f(Yt), if the modeller does

171

asda 172 LSD modelling language

not specify otherwise. Obviously, the same notation applies to parameters, which do not have
time tags attached. When the equation is instead required to use past (or lagged) values, then the
modeller needs to specify the number of lags.

Notice that in both cases, the modeller does not need to worry for the availability of the required
elements at the required updating stage. The system automatically ensures that the correct values
will be used as indicated in the equations. For example, if a required value is not available as
yet (say, that variable Y had not been updated at the current time step when requested for the
computation of X), then the system automatically updates the necessary values before completing
the computations requiring those values (that is, the equation for Y is executed before the equation
for X). Variables that are updated because of the need of their values by other equations are not
computed again in the same time step. Instead, functions have their equation re-computed at every
(and only) request.

10.4.2 Managing multiple copies

When an equation requires the values of other elements in the model, and these other elements
are present in many copies, by default the system provides the “closest” element, where the “dis-
tance” is computed according to the hierarchical links among objects (obviously, unless otherwise
specified). Suppose, for example, that the equation for variable X requires the value of an element
Y. Suppose also that there are many copies of X, that is, many copies of the objects containing
variable X, so that the equation for X will need to be executed, in the same time step, as many
time as many copies of X needs to be updated. For each execution, the system is requested to
retrive the value of an element labelled Y. Depending on the structure of the objects (that is,
the relation between the object containing Y and X), there will be different results, that is, the
system will provide the equations for each X with values from different copies of Y.

The default system, retrieving automatically the data required within the equations, works as
follows. If Y is an element stored into the same object containing X, then the copy used by every
X will be the one stored within the same object. Therefore, each execution of the equation for the
different copies of X will each use a different copy of Y, which has “distance” 0 from the object
containing X.

If the system cannot find Y within the same type of object containing X, then it starts looking
at the descending objects, that is, those contained with the object storing X and, if necessary,
those at still lower levels. The first copy of Y found in this search is returned, and its value used
in the equation. If even this search does not find Y, then the search continues on the higher level
objects, those in the hierarchy above that storing X.

At any stage, the system replicates the same search strategy: search among an object, then
its descending objects, and eventually among the higher levels ones, obviously without returning
in those already explored. This strategy ensures an exhaustive search over the whole structure,
so that if the searched element exists in an object of the model, the strategy is able to find it.
Moreover, if there are many copies of the searched element, the copy “closest” to the object storing
the variable under computation is provided.

10.5 C++ basic grammar for LSD coding

The code for the equations must be legal C++ code, extended with the LSD functions described
below. Before moving to describe the LSD specific commands to be used in LSD equations it is
necessary to have a minimum knowledge of the most frequently used C++ commands.

The code is composed by lines of commands that the computer generally executes sequentially,
moving to the next line when the previous one has been completed (unless otherwise instructed by
the code itself).

Any line of code must respect the C++ rule of terminating with a semi-colon “;”, unless the
line is a multi-column LSD command like EQUATION, or C++ command, like if(condition).

172

10.5 C++ basic grammar for LSD coding asda 173

10.5.1 Comments

The code can include comments, that is text that is ignored by the compiler and serves only to the
readers of the code to facilitate the interpretation. Comments in C++ comes in two forms:

/*

This is a multi line comment, continuing until

a sequence "star slash" is encountered

*/

//this is a single line comment,

//terminating at the end of the line

10.5.2 Assignments, arithmetic operations and increments

If a is a C++ variable, then the programmer can assign a value with the command “=”:
a=4.3;

Any assignment must be terminated with a semi-colon “;”.
It is also possible to assign values from other variables, and use the standard mathematical

operations, using the parentheses to group relevant priorities:
a=b+3-d/(e+g)*(h+i);

The above command expresses in C++ the formula:

a = b+ 3− d

e+ g
∗ (h+ i)

Less obviously, it is also possible to use the same variable on both sides of the assignment:
a=a+32;

The above line assigns a with its previous value increased of 32. Therefore, if a had the value of,
say, 5, after the above line it contains the value of 37.

These commands incrementing the value of a variable are so common that they have also a
short way to express them. For example, the command a=a+32; can be expressed also with the
command a+=32, saving the expression of a in the left part of the assignment. This short expression
can also be used for the other arithmetical operations:
a=a+32; ⇔ a+=32;

a=a/32; ⇔ a/=32;

a=a*32; ⇔ a*=32;

a=a-32; ⇔ a-=32;

A C peculiar command (++) allows both to increase of 1 a variable and to use it as assignment.
The command ++ (and its sister command --) works differently depending on whether it is used
after or before a variable symbol. If it is used after, the command firstly assign the current value,
and then increases it of 1. Instead, if ++ is used before a variable, it firstly increases its value, and
then assigns this. For example :
a=3;

b=a++;

c=++a;

At the end of the above commands, we will see that a equals 5 (3 and two increments), b equals
3 (because b=a++ firstly assigns the value of a to be, and then increments a), and c equals 5, because
a increased from 4 to 5 before being assigned to c.

Note the difference that exists between the equal sign “=” used as assignment (i.e. load the
value on the left to the symbol on the right), from the logical condition of identity (are the right and
left sides identical?). Computer languages must use two different symbols for the two operations.
In the following paragraph on the if conditional statement we will see the symbol used for the
logical identity.

173

asda 174 LSD modelling language

10.5.3 if ... then ... else

As said before, lines of code are executed sequentially, but there are exceptions. A frequently used
exception is the conditional execution of different blocks of lines depending on whether a condition
is verified as true or not. The grammar of the conditional command is the following:

if(condition)

{

/*

insert here any line you want to be executed

if "condition" is true

*/

}

else

{

/*

insert here any line you want to be executed

if "condition" is false

*/

}

The curly brackets “{}” can be skipped if there is only one line to be executed conditionally.
The condition is normally based on one of the following binary relations, assuming a and b to

be two numerical values or variables containing numerical values:

• Equal a==b: the condition is true if a equals b.

• Larger a>b: the condition is true if a is larger than b.

• Larger or equal a>=b: the condition is true if a is larger than or equal to b.

• Smaller a<b: the condition is true if a is smaller than b.

• Smaller or equal a<=b: the condition is true if a is smaller than or equal to b.

The condition can be composed with the logical operators of negation “not”, logical “and”, logical
“or”:

• Negation “!”: the !condition is true if condition is not true and viceversa

• Logical “and” &&: given two conditions cond1 and cond2, the condition (cond1 && cond2)

is true only if both cond1 and cond2 are true, in the three other cases (one or both false) is
false.

• Logical “or” ||: given two conditions cond1 and cond2, the condition (cond1 || cond2) is
true at least one cond1 or cond2 is true, otherwise is false.

For example, the following code distinguish three possible situations:

1. a equals b and c does not equal d

2. a equals b and c equals d

3. a does not equal b (irrespective of c and d)

if(a==b && !(c==d))

{/*

"a" equals "b" and "c" is different from "d"

*/

}

else

174

10.6 System variables available for equations’ writing asda 175

{// if the process is here, than one of the two conditions above is not true

if(a==b)

{ /*

"c" equals "d"

*/

}

else

{ /*

"a" is not equal to "b", but "c" may or may not equal "d"

*/

}

}

Conditions in C++ are just integer numbers, where “0” (zero) means false, and any non-zero
integer means true. Therefore, the condition if(1) is always true, while if(!1) is always false.

10.5.4 Use of cycle for

A very frequently used command in all programming languages allows to repeat a block of lines
again and again until a specific condition is satisfied. Note that in LSD equations you will not need
to use explicitly this command, since you have available the CYCLE(...) command, executing a
repetition for each descending object.

The grammar for the cycle for is:
for(INIT ; CONDITION ; ENDCYCLE)

followed by the block of code to be repeated contained between curly brackets “{” and “}”.
The for command executes the following steps:

1. Execute INIT;

2. control CONDITION. If it is true...

(a) execute the block of code

(b) execute the commands contain in the field ENDCYCLE

(c) return to 2

3. ... else exit because CONDITION is false

Example Repeat a block of code 5 times setting variable i from -2 to 2:

for(i=-2; i<3 ; i++)

{

/*

in the execution of these lines i

assumes values -2, -1, 0, 1 and 2

*/

}

//here i equals 3

10.6 System variables available for equations’ writing

Writing the equations of a model it is frequently necessary to make use C++ variables to store
intermediate results or, in general, data required to perform specific computations. The environ-
ment where the equations are executed provides a set of system variables2 that facilitates the most
frequent operations. Modellers can also use a set of system variables containing data from the
current state of the model, which may be useful to customize the computation of the equation.

2In order to avoid confusion, we will refer to a system variable meaning a C++ data structure, to be used within
the code for an equation. When, instead, we refer simply to a variable we mean a variable of the model.

175

asda 176 LSD modelling language

Finally, since the equations are basically C++ code, new system variables can be generated and
used by the modeller, though this is rarely necessary. For instructions and example on user defined
system variables see below.

We can distinguish the system variables in three different groups: system variables locally
available for use within the equation’s code; system variables specific to the equation computed;
global system variables concerning states of the whole model.

10.6.1 System variables locally available within an equation

The most frequently used system variables are those used to store intermediate values generated
within the equation. These variables are local in that their existence (and therefore the values
contained) is strictly limited to a single equation. Therefore, it is impossible to pass data from one
equation to another by means of a local variable, even though the name of the variable is identical.

The numerical values generated within an equation are stored into the local system variables
v[0], v[1], v[2], etc. These system variables are generally lost when an equation is completed.
However, during the LSD debugging their values are available, so that the user can inspect also the
intermediate steps within an equation.

The objects dealt with within an equation are stored in the local system variables cur, cur1,
cur2, cur3, etc. These system variables can, for example, be assigned a newly created object, in
order to perform specific operations like initializations.

In some cases it is necessary to integer system variables, differing from the values used in the
LSD models that are all real-valued numbers. The equations’ environment provides the following
integer system variables (always local): i, j, h, k. Note that assigning values between integer
and real-valued system variables requires a casting. For example, a line containing the command
i=v[2]; may generate an error. The correct form is i=(int)v[2];. Viceversa, the casting from
integer to real-valued system variable is v[2]=(double)i;.

10.6.2 System variables specific to the equation under computation

The equation executed is meant to provide a result to a specific copy of a variable, stored into
a specific copy of an object. The object containing the element computed is referred to as p.
Therefore, any operation requested to the p object will concern the very copy of the object whose
element is updated by the equation.

As we have seen, an equation may be computed either because the LSM updates the variable
associated to the equation or because the updated value for the element (variable or function)
is requested by another equation. In this second case, the equation being executed may require
information concerning the entity whose equation triggered its computation. The environment for
the equations provides the object c (for caller) whose element caused the equation to be computed,
that is, containing the variable or function whose equation is currently interrupted waiting for the
computing equation to be completed.

Notice that when the LSM requests a variable to be updated, and therefore there is no object
to be used, the system variable c still exist, taking the conventional value of NULL.

10.6.3 Global system variables

A third class of system variables contains information concerning the overall state of the model.

• System variable root contains the Root object of the model.

• System variable t contains the time step of the simulation. This is an integer variable;

• System variable max step contains the total number of steps defined for the simulation run.
This is an integer variable;

• System variable sim num contains the current simulation run executed, starting from 0. This
is an integer variable;

176

10.7 LSD objects’ links: ->up, ->next and ->son asda 177

• System variable seed contains seed used to initialize the random number generator at the
start of the simulation run. When more than one run is executed, the seed is increased at
every new run. This is an integer variable;

• System variable quit is set to 0 while the simulation is running. In order to stop the simu-
lation, before the completion of all the steps initially defined, it is possible to set quit=1. In
this case, the simulation will complete the updating of all the variables at the current time
step and then will terminate normally. This system variable is set to 2 when an error occurs,
and the simulation tries to stop without computing the equations. This is an integer variable;

• System variable msg[] is a character string, used to generate text messages within the equa-
tions.

10.7 LSD objects’ links: ->up, ->next and ->son

This paragraph describes some of techniques used to optimize the speed of execution of models.
Non expert users would better skip this paragraph paragraph.

Any object in the model is linked to other objects in order to generate the model structure.
Therefore, it is possible to use an object available in the equations’ environment and access its
“neighbours” (and potentially any object of the model). This operation is never necessary, since
there are LSD commands for the equations that provide the same result, that is, return object with
given characteristics. However, in some cases, it is more efficient to use directly the intended object
rather than relying on the LSD commands, which, being expressed in general forms, cannot exploit
specific properties of a model.

Given an object, like p, c or cur, the immediate neighbours of the objects are the following (call
obj the starting object).

• obj->up: is the object containing obj. Any model structure begins with the object called
Root, which is the only object for which the link obj->up is empty (technically equals NULL).

• obj->next: it is the link to the next element of the group of object to which obj is part of,
that is, having the same “parent” object obj->up. Notice that obj->next may be NULL is obj

is the last object of the group; obj->next may be a copy of the same type of object as obj,
or they may be different. The command go brother(obj) returns NULL in either case when
obj->next is NULL or is a different type of object.

• obj->son: is the link to the first object descending from obj. If obj->son is empty, then obj

contains no object’s, or descendants.

10.8 LSD commands for equations

This section describes all the LSD commands available for coding the equations, presenting also
examples for the most frequently used expressions. The same information contained in this section
is reported in the help menu in LMM. Any changes to the LSD functions or command is most
readily updated in the help pages of the distributed LSD version.

The typing and naming conventions used to describe the functions are the following:

• "Label": refer to a string of characters, normally used to express the label of a parameter,
variable, function or object, to be inserted in a LSD function;

• Label : refer to the model name of a variable, function, parameter or object;

• t: it is the time step during which the equation is computed;

• lag: a positive integer value, referring to the lag in respect of t;

• object under computation: this expression refer to the object p containing the variable whose
equation is computed;

177

asda 178 LSD modelling language

• obj: a general variable containing an object (may be p, or a temporary variable for object
cur);

• value: a real valued number;

The equations must be placed in a text file to be compiled with the rest of the LSD source
code in order to generate a LSD model program. The name of the file must be consistent with the
compilation option. Using LMM the user can simply ask the editor to show the equation file for
the model.

The equations can be placed in the equation file in any order, provided they are located between
the lines MODELBEGIN and MODELEND.

10.8.1 EQUATION("Label") ... RESULT(value)

The equation for a variable or a function is written in the equation file and is indicated by the
keywords:

EQUATION("Label")

/*

Place here a comment to be

used for the automatic documentation

of the model

*/

//any legal code here

RESULT(value)

The code above is the framework for the variable Label. Any code after the header EQUATION(...)
will be executed every time the variable or the function is computed. The final result must a real
value to be inserted in the last line RESULT(value).

10.8.2 V("X")

Return the value of X at the present time of the simulation, using the default LSD system to
retrieve elements of the model (see the example below). There are three other members of the
family:

• VL("X",lag) or p->cal("X",lag): return the value of X starting the search from the currently
computed objects at time t-lag;

• VS(obj,"X") or obj->cal("X",0): return the value of X starting the search from the object
obj at time t;

• VLS(obj,"X", lag) or obj->cal("X",lag): return the value of X starting the search from to
the object obj at time t-lag;

Example This is obviously the LSD command most frequently used in the equations’ code. This
command is implemented in such a way to always return the intuitively obvious value, that is, to
select the correct copy of the element requested choosing among possibly many copies. For example,
imagine that we have an object Industry containing variable Price, and many descending objects
Firm ’s, which, in turn, contain variables Quantity and Revenues. The equation for Revenues
can be written as:

EQUATION("Revenues")

/*

Compute the Revenues as the product of price (in Industry) and

Quantity (in Firm)

*/

RESULT(V("Quantity")*V("Price"))

178

10.8 LSD commands for equations asda 179

As we have already mentioned, the code for the equation is replicated identically for all the
copies of the object Firm in the model every time it must compute the value of Revenues. Each
time, the code will use a different value of Quantity, using the copy of the variable contained in
the same copy of the object that contains also the copy of Revenues which is being computed.

Moreover, the code expressing the value of Price does not differ from that for Quantity,
although in the first case LSD must access the object Industry while in the second it needs the
object Firm. Similarly to what said above, the equation behaves “correctly” even in case the
model includes more than one copy of Industry, and therefore many groups of objects Firm. In
this latter case, the value of Price used in each execution of the equation will refer to the copy of
Industry containing the copy of the object being computed3.

The command V(...) applied within an equation is actually a command executed on behalf of
a specific copy of a variable, which contained within an object. Let’s call this object the currently
computed object, although it is a bit imprecise since it is one of its variables to be computed. When
V(...) is executed LSD starts a search in the model looking for an object containing the desired
variable or parameter. The search starts from the currently computed object and can continue, if
necessary, up to the exploration of all the objects in the model. Given an object where to search
an element, say obj , the following rules are used (marked with mnemonic labels):

1. Search here: search among the elements contained in obj.

2. Search down: search among the elements contained in the objects descending from (i.e.
contained in) obj.

3. Search up: search among the elements of the object containing obj.

The search avoids to return in already explored objects, and therefore terminates either with
one copy of the searched element is found (and in this case the required value is returned), or,
otherwise, an error message is produced and the simulation aborts.

The error may also be due to the different spelling is between the label of an element in the
equation file and in the model structure.

The VS(obj,"X") and VLS(obj,"X", lag) members of the same family of V("X") are different in
that, instead of starting the search of the object from the currently computed object, the modeller
can specify in the obj field another object.

Almost all LSD functions requiring to read values of variables and parameters make use of the
same searching strategy described above.

10.8.3 V CHEAT("X", fake caller)

This is a rarely used LSD command, and only for reasons of efficiency. Return the value of X at
time t starting the search from the object under computation. The equation for X, if executed
because of this “call”, will use fake caller as if it were the object that requested its computation.
For example, the standard version of V("X") is equivalent to V CHEAT("X", p)

Normally, when the equation for variable Y is requested because another equation needs its
value, then the equation for Y can access the object containing the copy of Y which triggered its
computation (see object c). Instead, this function allows the equation for the triggered equation
to be “cheated”, in thinking another object actually requested its value.

The other members of the family are:

• VL CHEAT("X",lag, fake caller) or p->cal(fake caller,"X",lag): Return the value of X at
time t-lag starting to search from the object under computation. The equation for X will
use fake caller as if it were the object that requested its computation.

• VS CHEAT(obj1, "X", fake caller) or obj1->cal(fake caller,"X",0): Return the value of X
at time t starting the search from the object obj1. The equation for X will use fake caller

as if it were the object that requested its computation.

3That is, the object whose copy of Revenues is computed.

179

asda 180 LSD modelling language

• VLS CHEAT(obj1, "X",lag, fake caller) or obj1->cal(fake caller,"X",lag): Return the value
of X at time t-lag starting the search from the object obj1. The equation for X will use
fake caller as if it were the object that requested its computation.

10.8.4 SUM("X")

Return the sum of X ’s computed at time t contained in a group of objects descending from the
object under computation.

The other members of the family are:

• SUML("X",lag) or p->sum("X",lag): Return the sum of X ’s computed at time t-lag contained
in a group of objects descending from the object under computation.

• SUMS(obj, "X") or obj->sum("X",0): Return the sum of X ’s computed at time t contained
in a group of objects descending from obj.

• SUMLS(obj, "X",lag) or obj->sum("X",lag): Return the sum of X ’s computed at time t-lag

contained in a group of objects descending from obj.

Example: Suppose that the variable TotalProduction is contained in an object Industry
that contains several objects Firm with a variable called Production. The equation for Total-
Production is:

EQUATION("TotalProduction")

/*

Sum of the variables Production in all

the descending objects

*/

RESULT(SUM("Production"))

10.8.5 STAT(X)

Compute descriptive statistics for X at time t, supposedly an element contained in a set of objects
descending from the one under computation.

The command stores the result of the statistics in the vector of temporary variables v as follows:

• v[0]=number of elements;

• v[1]=average

• v[2]=variance

• v[3]=maximum value

• v[4]=mininimu value

The function can also be used as:

• STATS(obj, "X") or obj->stat("X", v): Compute descriptive statistics for X at time t, as-
sumed as elements contained in a set of objects descending from obj.

Example: Suppose that the variable TotalProduction and parameters AverageProduction
and MaximumProduction are contained in an object Industry that contains several objects
Firm with a variable called Production. The equation for TotalProduction is:

EQUATION("TotalProduction")

/*

Sum of the variables Production in all the descending

objects. Moreover, it also stores the average and maximum production

*/

STAT("Production");

180

10.8 LSD commands for equations asda 181

WRITE("AverageProduction",v[1]);

WRITE("MaximumProduction",v[3]);

RESULT(v[1]*v[0])

10.8.6 WHTAVE("X","W")

Return the average of X weighted with the values of W, both computed at time t and defined as
two elements located in a group of objects descending from the currently computed one.

Members of the same family are:

• WHTAVEL("X","W",lag) or p->whg av("W","X",lag): Return the average of X weighted with
the values of W, both computed at time t-lag and defined as two elements stored in a group
of objects descending from the currently computed one.

• WHTAVES(obj, "X","W") or obj->whg av("W","X",0): Return the average of X weighted with
the values of W, both computed at time t and defined as two elements located in a group of
objects descending from obj

• WHTAVELS(obj, "X","W", lag) or obj->whg av("W","X",lag): Return the average of X weighted
with the values of W, both computed at time t-lag and defined as two elements located in
a group of objects descending from obj

Example: suppose to have a group of objects Firm containing two elements, Productivity
and MarketShare. A variable contained in Market, containing a group objects Firm can contain
the following equation:

EQUATION("AverageProductivity")

/*

Average Productivity, computed as the average of Productivity

weighted by MarketShare.

*/

RESULT(WHTAVE("Productivity","MarketShare"))

10.8.7 MAX("X")

Return the maximum value of X at time t across a group of objects descending from the currently
computed one.

Members of the same family are:

• MAXL("X", lag) or p->overall max("X",lag): Return the maximum value of X at time t-lag

across a group of objects descending from the currently computed one.

• MAXS(obj, "X", lag) or obj->overall max("X",lag): Return the maximum value of X at
time t over a group of objects descending from obj.

• MAXLS(obj, "X", lag) or obj->overall max("X",lag): Return the maximum value of X at
time t-lag across a group of objects descending from obj.

Example: suppose to have a group of objects Firm containing variable Productivity. The
variable MaximumProductivity, contained in an object above this group can be computed with
following equation:

EQUATION("MaximumProductivity")

/*

Maximum value of Productivity among all

the set of descending objects.

*/

RESULT(MAX("Productivity"))

181

asda 182 LSD modelling language

10.8.8 Mathematical and probabilistic commands

LSD provides a list of mathematical and probabilitic functions to be used in the code for equations.

- abs(a): return the absolute value of a;
- min(a,b): return the minimum between a and b;
- max(a,b): return the maximum between a and b;
- round(a): return the integer closest to the real value a;
- exp(a): return the exponential of a, that is, ea;
- log(a): return the natural log of a;
- sqrt(a): return the square root of a;
- pow(a,b): return the power b of a, that is, ab;
- RND: return a value drawn from uniform random function between 0 and 1;
- UNIFORM(min, max): return a random uniform value in the interval [min,max].
- rnd integer(min, max): return a random integer value in the interval [min, max] with uniform

probability
- norm(mean,dev): return a random value drawn from a normal random function with mean

mean and deviation dev;
- poisson(mean): return a random value drawn from a poisson random function with mean

mean;
- gamma(mean): return a random value drawn from a gamma random function with mean mean;

Other variables are provided by the C++ mathematical library, added by default to the LSD

model programs (e.g. all the trigonometric functions).

10.8.9 WRITE("X",value)

Replace the value contained in the element X stored in the same object of the variable under
computation, with the value value. This command requires X to be located in the object indicated
and cannot be used for variables, since this would generate conflicts with the automatic recording
of the variables times of updating.

Other members of the same family of commands are:

- WRITEL("X",value, time) or p->write("X",value,time) : Replace with value the value for
variable X contained in the same object containing the equation’s variable, setting the time
of last update for X to time, which must be an integer. This format can be used for variables,
though, obviously not for the variable under computation.

- WRITES(obj, "X",value) or obj->write("X",value,0) : Replace with value the value for vari-
able X contained in object obj. This format cannot be used for variables.

- WRITELS(obj, "X",value, time) or obj->write("X",value,time) : Replace with value the
value for variable X contained in object obj, setting the time of last update for X to time,
which must be an integer. This format can be used for variables, though, obviously not for
the variable under computation.

For an example, see for function STAT in paragraph 10.8.5 pg. 180). As another example,
consider the case of creation of a new object Firm.

EQUATION("Entry")

/*

Generate a new firm

initializing its elements

*/

cur=ADDOBJ("Firm");

v[0]=V("IdGenerator");

WRITES(cur,"IdFirm",v[0]);

WRITELS(cur,"Capital",0, t);

RESULT(1)

Parameters and variables use the different formats to set only the values or also of the time
step of (apparent) last computation.

182

10.8 LSD commands for equations asda 183

10.8.10 INCR("X",value)

Replace the value of X with the previous value of the element increased by value, using the copy
of X found with a search started from the currently computed object. This command does not
modify the indicator of time of for the last computation of X, if this is a variable. The command
returns the new value of X after the increment.

Another form of this function is:

- INCRS(obj,"X",value) or obj->increment("X",value): Replace the value of X with the pre-
vious increased by value, using the X found with a search started from the object obj. The
function returns the new value of X after the increment.

Example: Suppose to have the equation in object Firm containing variable A for productivity,
variable Q for production, parameter K for capital and variable I for investment. Then, the
equation for Q could be written as:

EQUATION("Q")

/*

Compute the quantity produced as the product of K (increased of investment)

and A.

*/

v[0]=V("I");

v[1]=INCR("K",v[0]);

v[2]=V("A");

RESULT(v[2]*v[1])

10.8.11 MULT("X",value)

Similar to the command INCR(...), replaces the value of X with the previous value multiplied by
value. The command returns the new value of X after the multiplication.

Another form of this function is:

- MULTS(obj,"X",value) or obj->multiply("X",value): replaces the value of X with the pre-
vious value multiplied by value, using the X contained in the object found with a search
starting from the object obj. The command returns the new value of X after the multipli-
cation.

Example: Suppose to have the equation in object Firm containing variable A for productivity,
variable Q for production, parameter K for capital, parameter alpha expressing the depreciation
of capital and variable I for investment. Then, the equation for Q can be written as:

EQUATION("Q")

/*

Compute the quantity produced as the product of K (increased of investment and

reduced for consumption) and A.

*/

v[0]=V("I");

v[1]=V("alpha");

MULT("K",(1-v[1]));

v[2]=INCR("K",v[0]);

v[3]=V("A");

RESULT(v[2]*v[3])

10.8.12 SEARCH("X")

Return the first object with label X found descending from the currently computed one.
Another form of the function is:

- SEARCHS(obj,"X") or obj->search("X"): Return the first object X found descending from
obj.

183

asda 184 LSD modelling language

Notice that this command does not search the whole model structure, but only within the
descendants of the object indicated.

EQUATION("Entry")

/*

Generate a new firm identical to the

first firm existing in the model

*/

cur=SEARCH("X");

ADDOBJ_EX("Firm",cur);//add an object identical to cur

RESULT(1)

10.8.13 SEARCH CND("X",value)

Return the object containing the element X having the value at the current time equal to value.
The command returns the first copy of the object satisfying the condition found starting a search
from the object under computation (with the strategy described in LSD function V("..."), para-
graph 10.8.2, pg. 178).

Other members of the same family are:

- SEARCH CNDL("X",value, lag) or p->search var cond("X",value,lag): return the object con-
taining the element X with value value at time t-lag.

- SEARCH CNDS(obj,"X",value) or obj->search var cond("X",value,0): return the object con-
taining the element X with value value at time t starting the search from object obj.

- SEARCH CNDLS(obj,"X",value, lag) or obj->search var cond("X",value,lag): return the ob-
ject containing the element X with value value at time t-lag and starting the search from
object obj.

Example: Suppose to have a model where several firms in different industries offer products at
different prices, and a variable needs to provide the price of a randomly chosen firm in a randomly
chosen industry.

The model has an object Economy containing several objects called Industry (and a param-
eter NumIndustries containing the number of Industry ’s), each of which contains a group of
objects called Firm. Industry and Firm contain parameters called IdIndustry and IdFirm,
set to increasing values from 1 to the last element in the group. Moreover, suppose that each
Industry contains parameter NumFirms containing the number of descending objects Firm,
each with a parameter Price.

An equation could have the following code to select randomly one Industry and, within this,
a random Firm reporting the Price :

EQUATION("ChooseRandomPrice")

/*

Choose randomly a firm within a randomly chosen industry, and return

the price of the product in the chosen firm

*/

v[0]=V("NumIndustries");

v[1]=rnd_integer(1,v[0]);

cur=SEARCH_CND("Industry",v[1]);

v[2]=VS(cur,"NumFirms");

v[3]=rnd_integer(1,v[2]);

cur1=SEARCH_CNDS(cur1,"Firm",v[3]);

v[4]=VS(cur1,"Price");

RESULT(v[4])

184

10.8 LSD commands for equations asda 185

10.8.14 RNDDRAW("X","Y")

Return a randomly chosen object with label X among a group of them contained in the object
under computation, where each object has probability of being chosen proportional to the value of
variable or parameter Y, as computed at time t.

Other members of the same family are:

- RNDDRAWL("X","Y", lag) or p->draw rnd("X", "Y", lag) : Return a randomly chosen object
with label X among a group of them contained in the object under computation, where each
object has probability of being chosen proportional to the value of variable or parameter Y,
as computed at time t-lag.

- RNDDRAWS(obj, "X","Y") or obj->draw rnd("X", "Y", 0) : Return a randomly chosen object
with label X among a group of them contained in the object obj, where each object has
probability of being chosen proportional to the value of variable or parameter Y, as computed
at time t.

- RNDDRAWLS(obj, "X","Y", lag) or obj->draw rnd("X", "Y", lag) : Return a randomly cho-
sen object with label X among a group of them contained in the object obj, where each
object has probability of being chosen proportional to the value of variable or parameter Y,
as computed at time t-lag.

The probabilities to draw each copy of X will be given by by the ratio of the value of its Y
divided by the sum over all the Y ’s. Therefore, the Y cannot be negative.

The above functions need to compute the total sum of Y in order to assign the probabilities. A
related group of functions skip this computation allowing the modeller to provide the sum directly,
making the execution of the function faster, particularly when there are many copies of X. The
family of functions is:

- RNDDRAWTOT("X","Y", tot) or p->draw rnd("X", "Y", 0, tot) : Return a randomly chosen
object with label X among a group of them contained in the object under computation,
where each object has probability of being chosen equal to Y /tot, with the value of variable
or parameter Y computed at time t.

- RNDDRAWTOTL("X","Y", lag, tot) or p->draw rnd("X", "Y", lag, tot) : Return a randomly
chosen object with label X among a group of them contained in the object under compu-
tation, where each object has probability of being chosen equal to Y /tot, with the value of
variable or parameter Y computed at time t-lag.

- RNDDRAWTOTS(obj, "X","Y", tot) or obj->draw rnd("X", "Y", 0, tot) : Return a randomly
chosen object with label X among a group of them contained in the object obj, where each
object has probability of being chosen equal to Y /tot, with the value of variable or parameter
Y computed at time t.

- RNDDRAWTOTLS(obj, "X","Y", lag, tot) or obj->draw rnd("X", "Y", lag, tot) : Return a
randomly chosen object with label X among a group of them contained in the object obj,
where each object has probability of being chosen equal to Y /tot, with the value of variable
or parameter Y computed at time t-lag.

A last member of the family choose randomly an object with identical probabilities:

- RNDDRAWFAIR("X",) or p->draw rnd("X") : Return a randomly chosen object with label X
among a group of them contained in the object under computation, where each object has
the same probability.

- RNDDRAWFAIRS(obj,"X",) or obj->draw rnd("X") : Return a randomly chosen object with label
X among a group of them contained in the object obj, where each object has the same
probability.

Example: Suppose to write a model where consumers choose a product randomly as a function
of the market shares of the sales of each firm. The model should include an object Industry
containing a function Choose, and a group of object Firm (containing variable MarketShare).
The code for Choose in Industry can be expressed as:

185

asda 186 LSD modelling language

EQUATION("Chooose")

/*

Choose randomly a firm with probability proportional

to the market share and return the IdFirm

*/

cur=RNDDRAWTOT("Firm", "MarketShare",1);

RESULT(VS(cur, "IdFirm"))

10.8.15 CYCLE(obj,"ObjLabel")

This LSD expression is a very frequently used form of the for cycle (see 10.5.4, pg. 175). It is used
to create a cycle where at each iteration a different element of a group of ObjLabel is stored in
the temporary variable for objects obj, referred to as ’pointers’. The system provides several local
pointers: cur, cur1, cur2, etc.

The use of the command is the following:

CYCLE(cur, "Obj")

{/*********

place here any code. It will be repeated as many times

as many copies of Obj are found.

Each iteration will have a new copy of Obj

assigned to pointer cur

*********/

}

When the keyword CYCLE(cur, "X") the system searches for the first copy of X and assigns it to cur.
Any LSD function operating on cur is now actually operated on this first

The group of objects must be contained in the currently computed object.
Another form of the cycle is:

- CYCLES(objfrom, obj,"ObjLabel") or
for(obj=objfrom->search("ObjLabel");obj!=NULL;obj=go brother(obj)): in this form the group of
objects ObjLabel is contained in the object objfrom.

Example A commonly used index of concentration is the inverse Herfindal index4. The index is
computed as 1 divided by the sum of the squate of market shares:

InvHerd =
1

n∑
i=1

(msi ∗msi)

Suppose to have the variable InvHerf contained in an object containing also a group of objects Firm,
containing variable ms for market shares. The equation for InvHerf is:

EQUATION("InvHerf")

/*

Compute the sum of ms for firms and return its inverse.

*/

v[0]=0; //set the counter to 0

CYCLE(cur, "Firm")

{

v[1]=VS(cur, "ms");

v[0]=v[0]+v[1]*v[1]; //sum of squares of ms

}

RESULT(1/v[0])

The command CYCLE(...) cannot be used when the objects scanned may be deleted. In this
case it can be used the form: CYCLE SAFE(obj, "ObjLabel"), for object contained in the currently
computed object, or CYCLE SAFES(objFrom, obj, "ObjLabel"), where the cycling objects obj are
contained in the objFrom object.

4The index is a value from 1 to n, the number of firms. The lower the value the higher the concentration.

186

10.8 LSD commands for equations asda 187

10.8.16 SORT("ObjLabel","VarOrParLabel",DIRECTION)

Sorts the group of objects descending from the object under computation with label ObjLabel

according to increasing (if DIRECTION is ”UP”) or decreasing (if DIRECTION is ”DOWN”) values of
VarOrParLabel.

The other members of the same family are:

- SORTS(obj, "ObjLabel","VarOrParLabel",DIRECTION) or
obj->lsdqsort("ObjLabel","VarOrParLabel",DIRECTION) : Sorts the group of objects descend-
ing from obj with label ObjLabel according to increasing (if DIRECTION is ”UP”) or decreasing
(if DIRECTION is ”DOWN”) values of VarOrParLabel.

- SORT2("ObjLabel","VarOrParLabel1","VarOrParLabel2",DIRECTION) or
obj->lsdqsort("ObjLabel","VarOrParLabel1","VarOrParLabel2",DIRECTION) : Sorts the group
of objects descending from the object under computation with label ObjLabel according to
increasing (if DIRECTION is ”UP”) or decreasing (if DIRECTION is ”DOWN”) values of VarOr-
ParLabel1 ; if two objects have identical values of VarOrParLabel1, then their ranking is
determined by the values of VarOrParLabel2.

- SORTS2(obj, "ObjLabel","VarOrParLabel1","VarOrParLabel2",DIRECTION) or
obj->lsdqsort("ObjLabel","VarOrParLabel1","VarOrParLabel2",DIRECTION) : Sorts the group
of objects descending from obj with label ObjLabel according to increasing (if DIRECTION is
”UP”) or decreasing (if DIRECTION is ”DOWN”) values of VarOrParLabel1 ; if two objects
have identical values of VarOrParLabel1, then their ranking is determined by the values
of VarOrParLabel2.

The sorting method is the “qsort” implemented in the standard GNU C library, adapted to LSD

objects.
Example Consider a model where an object Industry contains a group of objects Firm. The

following lines of code in an equation for a variable contained Industry obtain the Price value of
the firm with the highest market shares:

...

SORT("Firm", "MarketShare", DOWN); //sort firms for decreasing market shares

cur=SEARCH("Firm"); //take the first in the group

v[0]=VS(cur, "Price"); //this is the price of the highest market share firm

...

10.8.17 ADDOBJ("X")

There are several commands that create objects in a model. The commands differ depending on
the values stored in the newly created objects, and on the number of objects to create. All the
formats of these commands require that the equation specifies the location for the newly created
objects, which must be an object already containing at least one copy of the object type added to
the model.

The simplest form is ADDOBJ("X"). In this case, the command adds a single copy of object X to
the object containing the variable computed. The new object will be initialized with the elements’
values set by the modeller for the very first object of type X at the start of the simulation run. If
object X contains descendants, they will be contained in the newly created object with only one
copy. All the variables in the newly created object will be set as if they were already computed at
the time of creation. Also, the flags for saving the data series will be those set by the modeller.
The series for the elements saved from newly created objects will appear as missing values for the
time steps before their creation.

The function returns the copy of the object, so that the modeller can modify some of its
elements, if necessary.

Other functions member of the same family are (all return the newly created copy):

- ADDOBJS(obj,"X") or obj->add an object("X"): add new copy of the object X to object obj.
Initialization of the new object is done as described above.

187

asda 188 LSD modelling language

- ADDOBJ EX("X",obj) or p->add an object("X",obj): add new copy of the object X to the
currently computed object. The new copy is an identical copy of obj, with the same values
for all the elements and for the number of descendants.

- ADDOBJS EX(obj1, "X",obj) or obj1->add an object("X",obj): add new copy of the object X
to obj1. The new copy is an identical copy of obj.

The above commands are pretty slow when creating many copies of objects. Other members
of the same family of commands to add objects permit to specify the number of new objects to
create. All the following commands return the first of the set of objects created.

- ADDONBJ("X", num): as ADDOBJ but generates num new copies.
- ADDONBJS(obj,"X", num): as ADDOBJS but generates num new copies.
- ADDONBJ EX("X", num, exObj): as ADDOBJ EX but generates num new copies.
- ADDONBJS EX(obj,"X", num, exObj): as ADDOBJS EX but generates num new copies.

Example Suppose to have a model with an object Industry containing a group of object
Firm having a variable Production MarketShare and Capital. In Industry we could have a
variable Entry creating a new firm, whose market share is set to 0, the initial capital is set to a
conventional value, and allowing the newly created firm to compute its own production.

EQUATION("Entry")

/*

Insert a new firm and initialize the variables

*/

cur=RNDDRAW("Firm", "MarketShare"); //Choose randomly an existing firm with prob=ms

cur1=ADDOBJ_EX("Firm",cur); //add a new firm identical to the chosen one

v[0]=V("MaxProductivity"); //highest productivity, computed in the market

v[1]=V("DevImitation");//Market parameter

v[2]=norm(v[0],v[1]); //draw randomly around best productivity

WRITEL(cur1, "Productivity",v[2]); //assign the new productivity (parameter)

WRITELS(cur1, "MarketShare",0,t); //assign 0 to variable market share at present time

v[0]=V("InitCapital"); //compute elsewhere the initial capital

WRITES(cur1, "Capital",v[0]); //assign the capital (parameter) of the new firm

WRITELS(cur1, "Production",0, t-1); //useless value, just mark the variable as computed at t-1

VS(cur1,"Production");//force the computation of the var Production with the new capital.

RESULT(1)

As another example, consider an equation creating a new market and inserting a set of firms.
The newly created market contains only one firm, which are therefore incremented to reach the
desired number.

EQUATION("NewMarket")

/*

Insert a new market with a number of new firms

Initialize the new firms with increasing IdFirm

*/

cur=ADDOBJ("Market"); //generate a new market

v[0]=V("NumNewFirm");

cur1=ADDNOBJS(cur,"Firm",v[0]-1); //creates remaining firms (one existed)

v[1]=1;

CYCLES(cur1->up, cur2, "Firm")

{//scan all newly created firms

WRITES(cur2,"IdFirm",v[1]++);

}

RESULT(1)

10.8.18 DELETE(obj)

Remove object obj from the model. The object will be removed from the model, but its variables
and parameters saved will show their value up the time step they have been computed, filling with
missing values the remaining time steps.

188

10.8 LSD commands for equations asda 189

The object removed is immediately removed from the model, and therefore this function must
always be used for objects different from any object in use by the model, like p or c. For example,
using the command DELETE(p) would imply to remove the object whose equation is being computed,
which is not possible.

Notice that removing all objects of a certain type will make impossible to re-create new ones.

EQUATION("Exit")

/*

Remove firms with zero market shares

*/

v[1]=0;

CYCLE_SAFE(cur, "Firm")

{

v[0]=VS(cur,"ms");

if(v[0]==0)

{

DELETE(cur);

v[1]++;

}

}

RESULT(v[1])

10.8.19 INTERACT("message", value)

This command interrupts the simulation presenting the user with the window of the LSD debugger
showing the object whose element is computed by the equation. The simulation will continue after
the user gives the command to continue the simulation.

The field message must be a brief text message, while value can be any real value, typically is
used to show the content of a local system variable. The command returns a value, which will be
the one inserted by the user in the cell of the LSD debugger window.

The command admits also the format INTERACTS(obj, "message", value), which makes the LSD

debugger show the object obj.

EQUATION("Exit")

/*

Remove firms with zero market shares

Deletion depending on the user

*/

v[1]=0;

CYCLE_SAFE(cur, "Firm")

{

v[0]=VS(cur,"ms");

if(v[0]==0)

{

v[2]=VS(cur,"Age");

v[1]=INTERACTS(cur, "Delete?", v[2]);

if(v[1]==1)

{

DELETE(cur);

v[1]++;

}

}

}

RESULT(v[1])

10.8.20 PARAMETER

This line placed anywhere in the code for an equation transform the variable computed in a
parameter. This avoids the code for the variable to be computed again during the simulation run.

189

asda 190 LSD modelling language

Example Suppose that your model contains a group of firms, and you want to be sure that
the parameter IdFirm is set to increasing values (some user may mishandle the initialization of
a model). Then you could write an equation for a variable Init which will be computed only once
at the beginning of the simulation and never again:

EQUATION("Init")

/*

Assign correctly initial values

for IdFirm, and then transform Init in a parameter.

*/

v[0]=1;

//for all firms

CYCLE(cur, "Firm")

WRITES(cur,"IdFirm", v[0]++); //assign IdFirm and increase v[0]

PARAMETER

RESULT(1)

10.8.21 Lattices: creation and updating

LSD uses a rather limited set of graphical tools to present the results, relying on the export of data
for any further elaboration besides those used in the Analysis of Results. However, there is an
experimental implementation of lattices available.

Lattices are bi-dimensional grids composed by cells that can be set to different colors. Modellers
can use two commands to create a lattice containing a window, and to change the color of a specific
cell of the lattice. The grammar of these commands is described below.

The command to create a lattice is:
init lattice(pixW, pixH, nrow, ncol,"LRow" , "LCol", "LVar", obj, color)

where the arguments have the following meaning:

- pixW: number of pixels of the window to be used for the width of the lattice
- pixH: number of pixels of the window to be used for the height of the lattice
- nrow: number of rows
- ncol: number of columns
- color: code for the initial color of the lattice.
- "LRow": not used. Can be any character string.
- "LCol": not used. Can be any character string.
- "LVar": not used. Can be any character string.
- obj: not used. Can be any object, for example NULL

Obviously, the command to create a lattice must be executed only once for a simulation run.
The command to change the color for a cell is:
update lattice(nline, ncol, color)

where the arguments have the following meaning:

- nline: line number of the cell
- ncol: column number of the cell
- color: code for the color of the cell

The color codes are integer values from 0 to 20.
The lattices generated have several features and can be managed in several ways.
Before launching the simulation the user can set two different systems to update the lattice,

using menu Run/Lattice updating from the LSD browser. The when the option is set on the lattices
will be updated in a more efficient way for models where few cell switch frequently colors. Con-
versely, when the option is de-selected the refreshing is faster for large lattices where cells change
colors only rarely.

In both cases, the lattice window at run time can have two modes of refreshing. In one case,
the lattice is refreshed every time a cell changes color. On the other mode the refreshing takes

190

10.8 LSD commands for equations asda 191

place only at the end of the step, for all the cells set during the step. To change refreshing mode
simply click on the lattice window, that will switch between modes at every click.

A further option of the lattice window consists in clicking the window with the right button
of the mouse. It is possible to save a dump of the window, as a graphical file formatted as an
encapsulated postscript document.

To increase the speed of the simulation it is possible iconify the lattice window. The refreshing
will continue to be performed in the background, and the speed of the simulation will increase
substantially.

10.8.22 close sim() function

Every model has available a C++ function which is always executed at the end of a simulation
exercise, after the last variable has been computed. This is to allow models that allocate memory
or keep open files to clean up the environment before returning to the user.

In most cases modellers do not need using this function, which is defined in the end of the
equation file as a do-nothing function.

As an example, consider that your model requires a C++ vector, to be allocated to a given
dimension, to be defined as a global variable, so that every equation may use its values. The
modeller must declare the C++ global variable, assign memory to it, and remove the memory
when the simulation is over. The following code performs these steps.

#include "fun_head.h"

double *myvector; //global C++ variable

MODELBEGIN

EQUATION("Init")

/*

Generate a vector. Equation computed only once

*/

v[0]=V("N");

mymatrix=new *double[(int)v[0]]; //Assign memory to the vector

PARAMETER

RESULT(1)

MODELEND

void close_sim(void)

{

delete myvector;//remove the allocated memory

}

Such structures are rarely used, since they cannot be managed as standard LSD elements. For
example, they cannot produced data to be used in Analysis of Results and the memory allocated
to them must be explicitly dealt with. Moreover, LSD model structure is always able to reproduce
whatever data structure may be required.

The only reason for using such instruments is efficiency, in terms of higher speed of execution.
In some cases, typically dealing with matrices, it may be worth to use specifically defined data
structures to store data that LSD standard variables can operate upon. For am example of this
use, see the matrix-based implementation of the percolation model. In this model you can find two
system variables declared on the top of the equation file:

#include "fun_head.h"

int **dat;

int **sta;

MODELBEGIN

...

191

asda 192 LSD modelling language

Then, a LSD variable, executed only once at the beginning of the simulation (stored in Root)
allocate memory for these variables:

...

v[2]=V("NCol");

v[3]=V("NRow");

dat=new int *[(int)v[3]];

sta=new int *[(int)v[3]];

for(i=0; i<(int)v[3]; i++)

{

dat[i]=new int [(int)v[2]];

sta[i]=new int [(int)v[2]];

j=(int)v[2];

for(h=0; h<j; h++)

{sta[i][h]=0;

if(RND<v[8])

dat[i][h]=1;

else

dat[i][h]=0;

}

}

...

Other LSD variables use these data, and, at the end of the simulation, the C++ function
close sim() releases the memory:

void close_sim(void)

{

double v[10];

v[0]=root->cal("NRow",0);

v[1]=root->cal("NCol",0);

for(v[2]=0; v[2]<v[1]; v[2]++)

{

delete sta[(int)v[2]];

delete dat[(int)v[2]];

}

delete sta;

delete dat;

}

10.8.23 Free pointer hook

Any object in a Lsd model contains a special field called hook. This field is a pointer to another
object, like the other pointers − >up that allow to move from one object to its “father” object.
The difference is that − >hook is never used by the system, and is left to the modellers for special
purposes. Typically, it serves to speed up the access of a frequently requested object.

For example, suppose you have a model where the object consumer contains parameter IdUsed
storing the code of product currently used. Moreover, suppose that the products can break at each
time step with a probability contained in the object Firm. The equation of the consumer to check
if the product breaks should be the following:

EQUATION("IdUsed")

/*

Id of the product used by the consumer.

Look whether the product breaks down or not. In teh first case choose a new product.

*/

v[0]=VL("IdUsed",1); //product used by the consumer

cur=SEARCH_CND("IdFirm",v[0]); //find the object with IdFirm equal to my IdUsed

192

10.8 LSD commands for equations asda 193

v[2]=VS(cur,"BD"); //read the probability of breaking the product

if(RND<v[2])

{ //product broken

cur1=RNDDRAWFAIRS(cur->up,"Firm"); //choose a new firm from the father of the former firm

v[1]=VS(cur1, "IdFirm");

}

else

v[1]=v[0]; //product not broken, used the same product as before

RESULT(v[1])

This equation can slow down the simulation in case it contains thousands of producers and of consumers,
since the system has to scan many Firm’s to find the one required by the consumer. The same code can
be written as follows:

EQUATION("IdUsed")

/*

Id of the product used by the consumer.

Look whether the product breaks down or not. In teh first case choose a new product.

p->hook is the consumers’ free pointer containing the firm used by the consumer.

*/

v[2]=VS(p->hook,"BD"); //read the probability of breaking the product

if(RND<v[2])

{ //product broken

cur1=RNDDRAWFAIRS(cur->up,"Firm"); //choose a new firm from the father of the former firm

p->hook=cur1;

v[1]=VS(cur1, "IdFirm");

}

else

v[1]=v[0]; //product not broken, used the same product as before

RESULT(v[1])

The code is faster because the equation do not need to scan all firms to find the desired one.

Beware that the modeller must ensure that the hook is always correctly assigned. In the example, you
need to consider that at the very first time step the hook is not assigned. At the start of a simulation run
all the hook’s are set to NULL. Therefore, you may change the code as follows:

EQUATION("IdUsed")

/*

Id of the product used by the consumer.

Look whether the product breaks down or not. In teh first case choose a new product.

p->hook is the consumers’ free pointer containing the firm used by the consumer.

*/

if(p->hook==NULL)

{//executed the very first time step, when hook is not assigned

v[0]=VL("IdUsed",1); //product used by the consumer

cur=SEARCH_CND("IdFirm",v[0]); //find the object with IdFirm equal to my IdUsed

v[2]=VS(cur,"BD"); //read the probability of breaking the product

p->hook=cur;

}

else

v[2]=VS(p->hook,"BD"); //read the probability of breaking the product

if(RND<v[2])

{ //product broken

cur1=RNDDRAWFAIRS(cur->up,"Firm"); //choose a new firm from the father of the former firm

p->hook=cur1;

v[1]=VS(cur1, "IdFirm");

}

else

v[1]=v[0]; //product not broken, used the same product as before

RESULT(v[1])

193

asda 194 LSD modelling language

10.8.24 turbosearch, initturbo

This is an experimental command, whose grammar is likely to be modified in future. See online documen-
tation in case of error messages.

The SEARCH CND(...) command is computationally impractical if the number of potential objects to
scan is too large because its implementation needs to access all the objects. The command turbosearch

allows an almost instantaneous access to an object in a large group5.

The command has limitations in its current implementation.

- The group of objects on which turbosearch will be applied must be treated preventively with the
command initturbo, which has some computational costs but must be executed only once.

- The group of objects allowing the turbosearch cannot be modified removing or adding new objects
after the application of initturbo.

- The search can be made exclusively on their position, not on their content.

The grammar for initturbo requires the name of the objects to be searched obj and their total numbers
n. Assuming p is the object parent of the group of obj, the initialization requires the following command:
p->initturbo("obj", n);

To obtain the ith object from the group and assign it to cur the command is:

cur=p->turbosearch("obj",n,i);

Let’s see an example. The following code generates a group of objects called Node each containing in
turn a descendant called Link. It then establishes a random number of links in between any Node and a
fixed number of randomly chosen ones.

The code also avoids duplications and write the id of linked nodes.

EQUATION("InitNetUniform")

/*

Create a network with a fixed number of uni-directional links per node.

*/

v[0]=V("NumNodes"); //desired number of nodes

ADDNOBJ("Node",v[0]-1);

v[1]=1;

CYCLE(cur, "Node")

WRITES(cur,"idNode",v[1]++); //assign a unique id to nodes

p->initturbo("Node", v[0]); //initialize the turbo structure

v[1]=V("NumLinks");

CYCLE(cur, "Node") //for each node

{WRITES(cur,"nLinks",v[1]);

ADDNOBJS(cur,"Link",v[1]-1); //add objects Link not created before

v[3]=VS(cur,"idNode"); //register the id of the current node

CYCLES(cur, cur1, "Link")

{ //for each link

v[2]=v[3]; //force the initial computation

while(v[2]==v[3])

{//repeat to avoid duplication or self-links

v[2]=rnd_integer(1,v[0]);

if(v[2]!=v[3])

{

CYCLES(cur, cur2, "Link")

{

if(VS(cur2, "LinkTo")==v[2])

{//if a link already exist fake the drawing of itself

v[2]=v[3];

break;

}

}

}

};

WRITES(cur1,"LinkTo",v[2]);

cur3=p->turbosearch("Node", v[0],v[2]);//search the actual node corresponding to v[2]

cur1->hook=cur3;

}

5The number of steps to search in a group of N objects is linearly increasing with SEARCH CND and increasing
with LOG10 with turbosearch. For example, the average 50,000 steps necessary to search in a group of 100,000
objects become just 4.

194

10.9 User defined external functions asda 195

SORTS(cur,"Link","LinkTo", "UP");

}

PARAMETER

RESULT(1)

On an iMac (late 2013) with an Intel i5 processor the equation generating 10 links per node takes less then 2
seconds for 105 nodes, about 17 seconds for 106 and about 32 second for 206. The limitation for the application
concerns the necessary memory, which is 0.58GB, 4.95GB and 9.85GB respectively.

10.9 User defined external functions
[to be completed]

10.10 External functions from C++ libraries
[to be completed]

195

asda 196 LSD modelling language

196

Chapter 11

Error Messages

There are four types of errors that a LSD user may encounter. First, the LSD system may be configured wrongly for
your system. These errors appear either when you try to compile LMM (Unix systems only) or when you try to
compile a LSD model program. For example, you may have installed a Tcl/Tk distribution different from the ones
specified in the system.

The second type of errors concern faulty equations’ code, with errors that prevent the C++ compiler to produce
a LSD model program. For example, one may have written a line without the terminating semicolon. These errors
appear in LMM when you try to compile and run the LSD model program after having edited the equations.

The third type of error appears when one misuses the LSD model program interfaces issuing commands that
are impossible to execute in the present context. For example, you may have tried to run a new simulation run
immediately after another run, therefore with the LSD model program containing the last time step simulation data
instead of a fresh data configuration.

The last type of error concerns mathematical or logical inconsistencies becoming apparent during a simulation
run. For example, one variable goes to zero, and another equation uses this variable as denominator in a division.

The next paragraphs list the four types of errors and suggest possible causes and available solutions.

11.1 Configuration errors

These errors concern only Unix users. If you are a MS Windows user, the only possibility for having a misconfigured
system is that you removed part of the LSD installation. Just restore the original installation and the problems
should be over.

11.1.1 /usr/bin/ld: cannot find -ltcl8.3

If you are a Unix user and try to compile with the batch file you may receive this error message.

This means that you don’t have installed the Tcl/Tk library or, more likely, that you have the version different
from the 8.3.

Fix: Edit the comp.linux try to remove the version numbers altogether, or place the correct version number in

place of the 8.3. Remember that you will have the same problem when compiling the LSD model programs. You

will have to update the system options with the same fix that works for compiling LMM. Use in LMM the menu

Model/System Compilation Options.

11.1.2 undefined reference to ’ gxx personality v0’

This problem emerges with the latest version of the GNU compiler, such as the one distributed, for
example, with the RedHat 8.0 and Mandrake 9.0 (and presumably also subsequent distrubutions).
Edit the comp.linux and replace ”gcc” with ”g++”. With an editor (or with LMM) open the file
makefile base.txt in the directory LSD/src and replace all instances of ”gcc” with ”g++”.

11.1.3 Other undefined reference ... errors

On different system may be necessary to link other libraries, like socket, X11 etc. Normally, the
undefined referenced function should explicate which library is missing. Insert in the comp.linux

file the -lmy library.

197

asda 198 Error Messages

11.2 Equations’ programming errors

These errors appear when you try to compile a LSD model program with a grammar error in
the equation file. In this case LMM issues an error message and a new window appears in the
background, labelled Compilation Results.

The following errors are listed according to the lines appearing in the Compilation Results window

11.2.1 fun sd.cpp:17: error: XXX was not declared in this scope

This error occurs because at the line indicated (17 in the example), the command XXX is not
understood by the compiler, probably because of mis-typing a correct command. Remember that
in C++ and LSD the case matters, so that, for example, v("X") is illegal, while V("X") is correct.

11.2.2 fun XXX.cpp:99: parse error before ...

The equation file contains a grammar error at or, more likely, just before the line number indicated
(99 in the example). Typically, it may be a missing semicolon terminating a command line. Note
that frequently an error in one location causes a long series of apparent errors in the subsequent
lines. Therefore concentrate only in finding and fixing the very first error, and then try to re-
compile. Likely, the other errors will disappear.

A very rare case is the following. If the line number corresponds to the latest opening curly
bracket {, normally the one for the function close sim(), then this means that there is an extra
opening curly bracket not matched by a closing one. In this case, remove the opening bracket in
the close sim() function, making it like:

void close_sim(void)

}

Then, locate the cursor just before the latest closing curly bracket and press Ctrl+m. The LMM
editor will show the matching opening curly bracket missing the closing matching one.

Either remove the stray opening bracket or insert the missing closing bracket. Before re-
compiling re-insert the opening bracket in the close sim(void) function.

11.2.3 lsd gnu.exe: Permission denied

You are a MS Windows user and you are trying to compile a LSD model program while an old
version of the program is running. The system is not able to overwrite the LSD model program file
and therefore the error message is issued.

Close the running LSD model program and re-compile.

11.2.4 fun pippo.cpp:99: label ‘end’ used but not defined

There is a closing curly bracket } not matched by an opening one. The compiler noticed this at
line 99 but it is located before that line.

Search the extra closing bracket and remove it, or place the missing corresponding opening
bracket.

11.3 Simulation run errors

This section lists the errors occurring during a simulation run.

198

11.3 Simulation run errors asda 199

11.3.1 Simulation just run

If you complete a simulation run and try to start immediately a new one the system will not allow
to proceed. The reason is that before starting a simulation run the system saves in a file the present
content of the model. At the end of a simulation run the content is the final step of a simulation
run, not the initial state as stored in the configuration file that produced the previous simulation.

If the user wants to replicate the just executed exercise must first re-load the configuration,
also using the Ctrl+w shortcut.

If the user wants to continue the just terminated simulation beyond the number of steps, it is
necessary first to save the current state of the model in a configuration file (menu File/Save) and
the load the new configuration file.

11.3.2 The simulation cannot start because ’XXX’ has not been initialized

Adding new parameters or lagged values require initialization. If the user only added a parameter,
but did not provide an initialization, the system refuses to start under the assumption that the
default value may be incorrect.

Move the browser to show the object containing the indicated element and press Ctrl+i to open
the initialization window. This is sufficient to start a simulation run.

11.3.3 Error in equation for ’XXX’. The model does not contain any element ’YYY’

Why executing the equation for variable XXX the system found a call to the element labelled
YYY. However, the system does not contain any element with such a label.

Likely reason is mispelling, differentiating, for example, the label YYY in the model configu-
ration and Yyy as spelled in the equation’s code. Fix the spelling error in either configuration or
equations.

11.3.4 Error trying to compute variable XXX. Equation not found

The system found in the configuration the element XXX as a variable or function. But the
equation file does not contain any equation with that name. Possibly the modeler forgot about it,
but there can be other reasons.

One possible reason may be the different spelling between the configuration and the equation.
To fix this problem use the same spelling.

If the equation is there, it may be possible that the currently used LSD model program has not
been compiled with the new equations as added to the equation file. To check for this close the
LSD model program and re-run it, and then try to run again the simulation.

A similar problem may be that the equation file used for the compilation by the system is
different from the equation file edited by the user. Thus, the equations are written there, but the
system does not use them. To fix this error check the file name where the equations are written. For
precaution select all the text of the equations. Then, in LMM uses menu Model / Show equations.
The file shown now is the one used for the equations. If this is empty, or not updated, paste there
the text previously copied. Otherwise search for the previously saved file and copy the text.

11.3.5 At time ’T’ the equation for ’XXX’ produced the non-valid value...

The equation for element XXX contains a computation producing a non valid number, such as a
division by zero (code inf), the logarithm of a negative number, etc.

Using the LSD debugger try to reconstruct the motivation for the un-expected error (negative
market shares? Null total production?) and fix the code as necessary.

11.3.6 Search for ’XXX’ failed

The system search, possibly conditionally, for elements not found.
To fix the error ensures that the necessary conditions for a successful search are met. Typically

due to mispelling or for search of non-existing values.

199

asda 200 Error Messages

11.3.7 Operation ’zzz’ requested to a NULL pointer in equation for ’XXX’

If you wrote in your code an operation using a non-initialized pointer, such as VS(cur, ‘‘X’’)

without having firstly assigned cur this error may occur. It may also result in a crash. To fix it
ensure that all pointers are correctly assigned controlling the code for ’XXX’.

Note that the object c exists with certainty only for functions, since their code is executed
exclusively when another equation asks for its value, and therefore there is a calling object. For
variables, on the contrary, it may be possible that the system asks to a variable to be updated
without being triggered by others. In these cases the object c is a pointer, and its use leads to this
error.

11.3.8 LSD crashes - DEBUG AT(T)

The major problem when a crash occurs is to identify the equation causing the crash, since once
identified it is possible to restrict the code to control. For that purpose you can use the command
DEBUG AT(t). This causes the program to write into a file the label of every variable before computing
its equation, so that reading the last label in the file it is possible to identify the equation with the
problem.

The command must be located immediately after equation file header:

MODELBEGIN

DEBUG_AT(42)

The command will be ignored until the simulation reaches time step indicated, in the example
42. From that point onwards the system will write in file log.log the sequence of variables starting
the computation of their equations. After the crash open the file indicated, in the model directory
(you can use also the LMM editor for this purpose) and read the very last line, which will provide
the name of the variable causing the crash.

11.3.9 Use of gdb debugger

Use the gdb debugger to follow the simulation instruction-by-instruction. A debugger is a program
that allows other programs to run in a controlled environment. When a program is run in a
debugger, it is possible to observe in detail what it does, for example interrupting its calculations
and checking the values of its internal variables. The debugger works as if the single lines of code
fire their commands only when explicitly directed.

Note that the gdb is a C++ debugger, and, therefore, it is not able to explore LSD specific
code, Objects etc., but their technical representation. Gdb permits, for example, to investigate
line by line the execution of an equation. However, this means that one has also to follow line-by-
line a lot of non-interesting technical code. LSD programmers may find much more useful the LSD

Debugger: it permits to follow a simulation by individual equations. When one variable, marked to
be debugged, is computed, the LSD debugger interrupts the simulation, shows the value produced
in the equation, the values of v[n] temporary values, the whole models’ values, etc., permitting to
understand, most of times, the cause of an error. See the LSD Debugger in section ??. However,
the gdb debugger is still useful in case of very hard problems where the modeler needs to observe
line by line the execution of the code within one equation.

The LSD model program in the gdb debugger runs as usual (slightly slower, if anything) but
the user can interrupt the program at any point, check the value of any variable, make the pro-
gram proceed by single steps, and a whole series of other functionality meant to help finding out
misbehaviours or errors in the program.

In case of a LSD model program, it is usually useful to focus on one equation and see the
behaviour of the program while executing that code. In the following we provide instructions on
a few gdb commands. They all take the form of commands to be typed at the line prompt of the
gdb shell. More information can be found in the gdb manual, available on the net, or simply typing
help in the gdb shell, possibly followed by a precise command.

To use the debugger you need LMM to compile the LSD model program using the option
SWITCH CC=-g, to be inserted in menu Model

200

11.3 Simulation run errors asda 201

Model compilation options. After confirming this option recompile and shut down the resulting LSD

model program.
You can run the gdb in two ways. Using the menu Model / gdb Debug you will have a command

shell already loaded with gdb. There you can set a breakpoint and run the model (see below).
Alternatively, right-click on the code of the equation exactly on the line you would like to start

the debugging. In the resulting menu choose the option Place a break and run gdb. This will open
the shell with the breakpoint already set at that line.

In the gdb shell you can use the following commands:

- break fun XXX.cpp:132: places a breakpoint at line 132 of the file fun XXX.cpp. When the
execution of the program reaches that line, gdb interrupts the program and offers the users
with the gdb prompt.

- break 232: places a break in the currently considered source file at line 232;

- run: causes the program to run. The execution will be interrupted at one of the following
events: the normal end of the program is reached; the flow of the program finds a breakpoint;
the program crashes.

- break myfun: places a breakpoint at the first line of the function myfun;

- break variable::fun places a breakpoint at the first line of the method fun of the object
variable.

- print X: shows the content of the variable X. For example print v[3] will show the content
of the local variable indicated.

- display X: shows the content of the variable X, which remains visible through other commands
(e.g. next, step etc.) until undisplay is called.

- step: makes just one step in the execution of the program

- next: like step, but, if a subfunction is found, next ”step over” it without entering within the
code of the function

- continue: resort the program continuing after an interruption;

- delete [n]: remove the breakpoints. If no number is specified all the breakpoints are re-
moved. Otherwise, only the one marked with the specified number is eliminated.

- list: shows the source code lines above and after the one that is going to be executed.

- list -10 [10]: shows 10 previous [subsequent] lines in respect of the one shown before.

- cond 2 v[0] == 3: assigns a condition to a breakpoint, so that the execution is interrupted
only if the condition is true. In the example, the second breakpoint specified is active only if
the value of v[0] is identical to 3, otherwise the execution will not be interrupted.

- bt (backtrace): shows the stack of the program. It is the list of functions that are called at
the moment in the execution of the program.

For more information on this and other commands, use the help in gdb (just type help and
the name of the command). Moreover, in gdb works the command completion, so that typing, for
example, ”disp” and then pressing the tab key, the command display is automatically completed. In
case of possible ambiguity (e.g. typing only ”dis” and tab) the prompt shows the list of alternative
among which to choose (this is also a weird, but rather useful, way to discover new functionalities).

201

asda 202 Error Messages

202

Part IV

LSD project

203

Chapter 12

LMM source code

205

asda 206 LMM source code

206

Chapter 13

LSD source files

207

asda 208 LSD source files

208

Chapter 14

Adding new features to LSD

209

asda 210 Adding new features to LSD

210

Chapter 15

Adding new members to the
equations’ language

211

asda 212 Adding new members to the equations’ language

212

Chapter 16

Adding new functionalities to the
LSD interfaces

213

	I Simulations and L-.58exS-.2exD
	Why using L-.58exS-.2exD?
	Simple to use AND powerful
	Open-ended simulation models
	Controlling simulation models
	Intended audiences, aims and content
	Content of chapter I
	Content of chapter II
	Content of chapter III
	Content of chapter IV

	Methodological issues on simulations
	History of L-.58exS-.2exD
	L-.58exS-.2exD pre-history
	L-.58exS-.2exD 0.01
	L-.58exS-.2exD in use

	Features of Laboratory for Simulation Development
	Simulation Model elements
	Variables
	Functions
	Parameters
	Objects
	Data required for a simulation run

	Overview of the L-.58exS-.2exD package
	L-.58exS-.2exD Model Manager - LMM
	L-.58exS-.2exD model programs

	Technical requirements
	Installation
	Windows platforms
	Linux and Unix-based plaftorms
	MacOS

	L-.58exS-.2exD Model Manager - A first look

	Example 1 - Random Walk
	Random walk
	Analysing the results
	Managing random events
	Multiple objects
	L-.58exS-.2exD automatic data retrieving
	Functions vs variables
	Analysing massive amounts of data

	II Tutorials
	Implementing L-.58exS-.2exD models: Example 1
	Create a new model project
	Introduction to L-.58exS-.2exD equations
	Defining L-.58exS-.2exD model elements
	Running L-.58exS-.2exD simulations
	Results of L-.58exS-.2exD simulation runs
	Extending a L-.58exS-.2exD model equations
	Initializing L-.58exS-.2exD elements
	Setting the number of objects
	Initializing multiple elements
	Plotting multiple series
	Statistics
	Comments on equations' code
	Simulation settings
	Using lagged variables
	Multi-layered object structure
	Equations for multi-layered models
	L-.58exS-.2exD Simulation Manager
	Extending the model: quality and sales
	Assessing the model's behaviour
	Generating new series
	Replacing a variable
	Dead-lock errors - Spotting and fixing temporal inconsistencies
	Modelling Time: changing order of L-.58exS-.2exD equations
	Interpreting results
	L-.58exS-.2exD Debugger

	Implementing L-.58exS-.2exD Models: Example 2
	Model Content
	Model structure and core equations
	Finding model data in L-.58exS-.2exD equations (equation for IsBroken)
	Automatic data retrieving
	Manual data retrieving
	Functions vs. Variables
	Accessing the calling object
	Accessing a randomly chosen object

	Using parameters as ``passive'' variables
	Manual scheduling: semaphores
	Initialization by code
	Testing models
	Code optimization
	Optimization running options
	Optimizing code: hook
	Optimizing code: V_CHEAT
	Optimizing large models: turbosearch

	Implementing L-.58exS-.2exD Models: Example 2
	Functions
	Analysis of Results: Histograms
	L-.58exS-.2exD equations: the calling object c
	More on the L-.58exS-.2exD Debugger
	Extending the model
	Multiple parallel simulations
	Series tags and advanced selection
	Cross-section scatter plots
	Creating new series
	Random events
	Conditional searches
	Endogenizing parameters
	Custom initialization: overwriting elements' values
	Nested cycles
	Testing the Smallwood and Conlisk (1979) model
	Optimizing simulations: semaphores
	Optimizing simulations: pointer hook
	L-.58exS-.2exD Automatic Documentation
	Using the Model Report

	Example Models
	Logistic chaotic model
	Spatial market model
	Moving snake model
	Financial market model
	Business plan assessment
	Network externality model
	Nelson and Winter (1982) model
	Lotka Volterra model
	Richardson's dynamic competition
	Percolation model
	Social network model
	Bounded rational demand
	NK fitness landscape

	III L-.58exS-.2exD Manuals
	LMM interfaces
	Editor features
	Click with the right button of the mouse
	Insert L-.58exS-.2exD Script

	Menu File
	Menu Edit
	Go to line (Ctrl+l)
	Match {} (Ctrl+m)
	Match () (Ctrl+p)
	Insert { and Insert } (Ctrl+(and Ctrl+))
	Wrap/Unwrap (Ctrl+w)
	TkDiff
	Compare models

	Menu Model
	Browse Models
	Compile and Run model
	GDB Debug
	Show Equation File
	Show Makefile
	Show Compilation results
	Show Description
	Model Info
	System compilation options
	Model compilation option
	Generate a 'NO WINDOW' makefile

	Menu Help

	L-.58exS-.2exD model program interfaces
	Browser window features
	Moving elements
	Options for an element
	Objects' options

	Menu File
	Menu Model
	Add a variable (Ctrl+v)
	Add a parameter (Ctrl+p)
	Add a function (Ctrl+n)
	Add a descending Obj. (Ctrl+d)
	Insert a new parent
	Change obj. Name
	Set equation file label
	Ignore equation file controls
	Upload equation file
	Offload the equation file
	Compare eq. files
	Generate automatic documentation
	Create report
	Create LaTex report
	Find an element of the model (Ctrl+f)

	Menu Data
	Set number of objects (Ctrl+o)
	Init. values (Ctrl+i)
	Sensitivity (parallel)
	Sensitivity (sequential)
	Analysis of Results (Ctrl+a)
	Save Results (Ctrl+z)
	Data Browse (Ctrl+b)

	Menu Run
	Run (Ctrl+r)
	Set sim. settings (Ctrl+m)
	Remove debug flags
	Remove save flags
	Remove plot flags
	Show elements saved
	Show elements to observe
	Show elements to initialize
	Remove run time plots

	Menu Help
	Module Set Objects' number
	Module Initial values
	Initialization functions

	Module Analysis of Results
	Selecting series to process
	Advanced selection
	Graphs general options
	Graph windows' features
	Graph type Time Series - Sequence
	Graph type Cross section - Sequence
	Graph type Time Series - XY plot
	Graph type Cross section - XY plot
	Graph type Histograms
	Graph type Lattice
	Statistics
	Exporting data
	Exporting graphs
	Adding further series

	Module L-.58exS-.2exD Debugger and Data Browser
	Inspecting and changing elements' states
	Inspecting and changing objects
	Moving the browser through the objec structure
	Simulation run' controls
	Debugger header

	Log window features
	Button Stop
	Button Fast
	Button Observe
	Button Debug
	Button Help
	Button Copy

	Model structure window features

	L-.58exS-.2exD modelling language
	Introduction
	Model structure
	L-.58exS-.2exD equations

	Computable elements: variables and functions
	L-.58exS-.2exD Simulation Manager
	Environment for L-.58exS-.2exD equations
	Managing time lags
	Managing multiple copies

	C++ basic grammar for L-.58exS-.2exD coding
	Comments
	Assignments, arithmetic operations and increments
	if ... then ... else
	Use of cycle for

	System variables available for equations' writing
	System variables locally available within an equation
	System variables specific to the equation under computation
	Global system variables

	L-.58exS-.2exD objects' links: ->up, ->next and ->son
	L-.58exS-.2exD commands for equations
	EQUATION("Label") ... RESULT(value)
	V("X")
	V_CHEAT("X", fake_caller)
	SUM("X")
	STAT(X)
	WHTAVE("X","W")
	MAX("X")
	Mathematical and probabilistic commands
	WRITE("X",value)
	INCR("X",value)
	MULT("X",value)
	SEARCH("X")
	SEARCH_CND("X",value)
	RNDDRAW("X","Y")
	CYCLE(obj,"ObjLabel")
	SORT("ObjLabel","VarOrParLabel",DIRECTION)
	ADDOBJ("X")
	DELETE(obj)
	INTERACT("message", value)
	PARAMETER
	Lattices: creation and updating
	close_sim() function
	Free pointer hook
	turbosearch, initturbo

	User defined external functions
	External functions from C++ libraries

	Error Messages
	Configuration errors
	/usr/bin/ld: cannot find -ltcl8.3
	undefined reference to '__gxx_personality_v0'
	Other undefined reference ... errors

	Equations' programming errors
	fun_sd.cpp:17: error: ÔXXXÕ was not declared in this scope
	fun_XXX.cpp:99: parse error before ...
	lsd_gnu.exe: Permission denied
	fun_pippo.cpp:99: label `end' used but not defined

	Simulation run errors
	Simulation just run
	The simulation cannot start because 'XXX' has not been initialized
	Error in equation for 'XXX'. The model does not contain any element 'YYY'
	Error trying to compute variable XXX. Equation not found
	At time 'T' the equation for 'XXX' produced the non-valid value...
	Search for 'XXX' failed
	Operation 'zzz' requested to a NULL pointer in equation for 'XXX'
	L-.58exS-.2exD crashes - DEBUG_AT(T)
	Use of gdb debugger

	IV L-.58exS-.2exD project
	LMM source code
	L-.58exS-.2exD source files
	Adding new features to L-.58exS-.2exD
	Adding new members to the equations' language
	Adding new functionalities to the L-.58exS-.2exD interfaces

